GaN based MQW epitaxial layers were grown on Si (111) substrate by MOCVD using AIN as the buffer layer. High light extraction LEDs were prepared by substrate transferring technology in combination with thin-film and...GaN based MQW epitaxial layers were grown on Si (111) substrate by MOCVD using AIN as the buffer layer. High light extraction LEDs were prepared by substrate transferring technology in combination with thin-film and flip-chip design. The blue and white 1.1 × 1.1 mm2 LED lamps are measured. The optical powers and external quantum efficiency for silicone encapsulated blue lamp are 546 mW, and 50.3% at forward current of 350 mA, while the photometric light output for a white lamp packaged with standard YAG phosphor is 120.1 lm.展开更多
This work reports the fabrication of via-thin-film light-emitting diode (via-TF-LED) to improve the light output power (LOP) of blue/white GaN-based LEDs grown on Si (111) substrates. The as-fabricated via-TF-LE...This work reports the fabrication of via-thin-film light-emitting diode (via-TF-LED) to improve the light output power (LOP) of blue/white GaN-based LEDs grown on Si (111) substrates. The as-fabricated via-TF-LEDs were featured with a roughened n-GaN surface and the p-GaN surface bonded to a wafer carrier with a silver-based reflective electrode, together with an array of embedded n-type via pillar metal contact from the p-GaN surface etched through the multiple-quantum-wells (MQWs) into the n-GaN layer. When operated at 350 mA, the via-TF- LED gave an enhanced blue LOP by 7.8% and over 3.5 times as compared to the vertical thin-film LED (TF-LED) and the conventional lateral structure LED (LS-LED). After covering with yellow phosphor that converts some blue photons into yellow light, the via-TF-LED emitted an enhanced white luminous flux by 13.5% and over 5 times, as compared with the white TF-LED and the white LS-LED, respectively. The significant LOP improve- ment of the via-TF-LED was attributed to the elimination of light absorption by the Si (111) epitaxial substrate and the finger-like n-electrodes on the roughened emitting surface.展开更多
文摘GaN based MQW epitaxial layers were grown on Si (111) substrate by MOCVD using AIN as the buffer layer. High light extraction LEDs were prepared by substrate transferring technology in combination with thin-film and flip-chip design. The blue and white 1.1 × 1.1 mm2 LED lamps are measured. The optical powers and external quantum efficiency for silicone encapsulated blue lamp are 546 mW, and 50.3% at forward current of 350 mA, while the photometric light output for a white lamp packaged with standard YAG phosphor is 120.1 lm.
基金Project supported by the National Key R&D Program(Nos.2016YFB0400100,2016YFB0400104)the National Natural Science Foundation of China(Nos.61534007,61404156,61522407,61604168,61775230)+7 种基金the Key Frontier Scientific Research Program of the Chinese Academy of Sciences(No.QYZDB-SSW-JSC014)the Science and Technology Service Network Initiative of the Chinese Academy of Sciencesthe Key R&D Program of Jiangsu Province(No.BE2017079)the Natural Science Foundation of Jiangsu Province(No.BK20160401)the China Postdoctoral Science Foundation(No.2016M591944)supported by the Open Fund of the State Key Laboratory of Luminescence and Applications(No.SKLA-2016-01)the Open Fund of the State Key Laboratory on Integrated Optoelectronics(Nos.IOSKL2016KF04,IOSKL2016KF07)the Seed Fund from SINANO,CAS(No.Y5AAQ51001)
文摘This work reports the fabrication of via-thin-film light-emitting diode (via-TF-LED) to improve the light output power (LOP) of blue/white GaN-based LEDs grown on Si (111) substrates. The as-fabricated via-TF-LEDs were featured with a roughened n-GaN surface and the p-GaN surface bonded to a wafer carrier with a silver-based reflective electrode, together with an array of embedded n-type via pillar metal contact from the p-GaN surface etched through the multiple-quantum-wells (MQWs) into the n-GaN layer. When operated at 350 mA, the via-TF- LED gave an enhanced blue LOP by 7.8% and over 3.5 times as compared to the vertical thin-film LED (TF-LED) and the conventional lateral structure LED (LS-LED). After covering with yellow phosphor that converts some blue photons into yellow light, the via-TF-LED emitted an enhanced white luminous flux by 13.5% and over 5 times, as compared with the white TF-LED and the white LS-LED, respectively. The significant LOP improve- ment of the via-TF-LED was attributed to the elimination of light absorption by the Si (111) epitaxial substrate and the finger-like n-electrodes on the roughened emitting surface.