期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Micro Electrical Discharge Machining(μEDM):Holes Drilling and Characterization of the Process Parameters
1
作者 Asmae Tafraouti Yasmina Layouni 《材料科学与工程(中英文B版)》 2021年第3期109-116,共8页
μEDM(micro-electrical discharge machining)is a process for machining conductive materials without mechanical contact;it is particularly suitable for machining hard materials.The principle consists in creating electri... μEDM(micro-electrical discharge machining)is a process for machining conductive materials without mechanical contact;it is particularly suitable for machining hard materials.The principle consists in creating electrical discharges between a micro-tool and a workpiece,both of which are immersed in a dielectric.It is a complementary process to mechanical,laser,micro-machining techniques,and even to techniques derived from silicon microtechnology(RIE,DRIE,LIGA).However,the resolution ofμEDM is limited;it depends on several electrical and physical parameters.The goal of this paper is to characterize the holes obtained by drilling usingμEDM with different micro-tool diameters(Φ=250μm;Φ=80μm;Φ=40μm;Φ=20μm)for an experimental time of t=2 h.The results obtained let us conclude that a large diameter micro-tool(Φ=250μm)leads to removing a larger amount of material(43×10^(5)μm^(3))than small diameters:Φ=80μm;Φ=40μm;Φ=20μm where the removed volume is equal to 2.6×10^(5)μm^(3);105μm^(3);0.4×10^(5)μm^(3),respectively.The electrode-tool diameter influences the maximum depth of the holes;a diameter ofΦ=250μm generates a hole where the maximum depth is 170μm while small diameters:Φ=80μm;Φ=40μm;Φ=20μm provide holes with a depth of 82μm;51μm;50μm respectively.Through these experiments,we can also conclude that the lateral gap of the holes is almost constant.It is about 40μm whatever the diameter. 展开更多
关键词 μEDM electrical discharges hole drilling amount of removed material.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部