With increasing population and changing demographics,food consumption has experienced a significant transition in quantity and quality.However,a dearth of knowledge remains regarding its environmental impacts and how ...With increasing population and changing demographics,food consumption has experienced a significant transition in quantity and quality.However,a dearth of knowledge remains regarding its environmental impacts and how it responds to demographic dynamics,particularly in emerging economies like China.Using the two-stage Quadratic Almost Demand System(QUAIDS)model,this study empirically examines the impact of demographic dynamics on food consumption and its environmental outcomes based on the provincial data from 2000 to 2020 in China.Under various scenarios,according to changes in demographics,we extend our analysis to project the long-term trend of food consumption and its environmental impacts,including greenhouse gas(GHG)emissions,water footprint(WF),and land appropriation(LA).The results reveal that an increase in the proportion of senior people significantly decreases the consumption of grain and livestock meat and increases the consumption of poultry,egg,and aquatic products,particularly for urban residents.Moreover,an increase in the proportion of males in the population leads to higher consumption of poultry and aquatic products.Correspondingly,in the current scenario of an increased aging population and sex ratio,it is anticipated that GHG emissions,WF,and LA are likely to decrease by 1.37,2.52,and 3.56%,respectively.More importantly,in the scenario adhering to the standards of nutritional intake according to the Dietary Guidelines for Chinese Residents in 2022,GHG emissions,WF,and LA in urban areas would increase by 12.78,20.94,and 18.32%,respectively.Our findings suggest that changing demographics should be considered when designing policies to mitigate the diet-environment-health trilemma and achieve sustainable food consumption.展开更多
Improving cultivated land use eco-efficiency(CLUE)can effectively promote agricultural sustainability,particularly in developing countries where CLUE is generally low.This study used provincial-level data from China t...Improving cultivated land use eco-efficiency(CLUE)can effectively promote agricultural sustainability,particularly in developing countries where CLUE is generally low.This study used provincial-level data from China to evaluate the spatiotemporal evolution of CLUE from 2000 to 2020 and identified the influencing factors of CLUE by using a panel Tobit model.In addition,given the undesirable outputs of agricultural production,we incorporated carbon emissions and nonpoint source pollution into the global benchmark-undesirable output-super efficiency-slacks-based measure(GB-US-SBM)model,which combines global benchmark technology,undesirable output,super efficiency,and slacks-based measure.The results indicated that there was an upward trend in CLUE in China from 2000 to 2020,with an increase rate of 2.62%.The temporal evolution of CLUE in China could be classified into three distinct stages:a period of fluctuating decrease(2000-2007),a phase of gradual increase(2008-2014),and a period of rapid growth(2015-2020).The major grain-producing areas(MPAs)had a lower CLUE than their counterparts,namely,non-major grain-production areas(non-MPAs).The spatial agglomeration effect followed a northeast-southwest strip distribution;and the movement path of barycentre revealed a"P"shape,with Luoyang City,Henan Province,as the centre.In terms of influencing factors of CLUE,investment in science and technology played the most vital role in improving CLUE,while irrigation index had the most negative effect.It should be noted that these two influencing factors had different impacts on MPAs and non-MPAs.Therefore,relevant departments should formulate policies to enhance the level of science and technology,improve irrigation condition,and promote sustainable utilization of cultivated land.展开更多
Over the past few decades,the Internet has rapidly diffused across China.The spread of the Internet has had a profound economic and social impact on Chinese rural areas.Existing research shows that Internet access sig...Over the past few decades,the Internet has rapidly diffused across China.The spread of the Internet has had a profound economic and social impact on Chinese rural areas.Existing research shows that Internet access significantly impacts agricultural production and improves smallholder farmers’income.Beyond these,the Internet can affect other dimensions of social welfare.However,research about the impact of Internet access on dietary quality in rural China remains scarce.This study utilizes multi-period panel data from Fixed Observation Point in rural China from 2009 to 2015 to estimate the impact of Internet access on dietary quality and food consumption of rural households and conducts a causal analysis.Regression models with time and household fixed effects allow robust estimation while reducing potential issues of unobserved heterogeneity.The estimates show that Internet access has significantly increased rural household dietary quality(measured by the Chinese Diet Balance Index).Further research finds that Internet access has increased the consumption of animal products,such as aquatic and dairy products.We also examine the underlying mechanisms.Internet access improves dietary quality and food consumption mainly through increasing household income and food expenditure.These results encourage the promotion of Internet access as a valuable tool for nutritional improvements,especially in rural areas.展开更多
Genome-wide association mapping studies(GWAS)based on Big Data are a potential approach to improve marker-assisted selection in plant breeding.The number of available phenotypic and genomic data sets in which medium-s...Genome-wide association mapping studies(GWAS)based on Big Data are a potential approach to improve marker-assisted selection in plant breeding.The number of available phenotypic and genomic data sets in which medium-sized populations of several hundred individuals have been studied is rapidly increasing.Combining these data and using them in GWAS could increase both the power of QTL discovery and the accuracy of estimation of underlying genetic effects,but is hindered by data heterogeneity and lack of interoperability.In this study,we used genomic and phenotypic data sets,focusing on Central European winter wheat populations evaluated for heading date.We explored strategies for integrating these data and subsequently the resulting potential for GWAS.Establishing interoperability between data sets was greatly aided by some overlapping genotypes and a linear relationship between the different phenotyping protocols,resulting in high quality integrated phenotypic data.In this context,genomic prediction proved to be a suitable tool to study relevance of interactions between genotypes and experimental series,which was low in our case.Contrary to expectations,fewer associations between markers and traits were found in the larger combined data than in the individual experimental series.However,the predictive power based on the marker-trait associations of the integrated data set was higher across data sets.Therefore,the results show that the integration of medium-sized to Big Data is an approach to increase the power to detect QTL in GWAS.The results encourage further efforts to standardize and share data in the plant breeding community.展开更多
Double-pulse LIBS is a promising technique for deep-sea applications.LIBS measurements in shallow water with up to 400 mJ each pulse were done to select laser parameters which promote optimized spectral line emission ...Double-pulse LIBS is a promising technique for deep-sea applications.LIBS measurements in shallow water with up to 400 mJ each pulse were done to select laser parameters which promote optimized spectral line emission from plasma even at elevated pressures,where line broadening until loss of most of the spectral information can occur.Optical emission spectroscopy,using a Czerny-Turner spectrometer,has been applied to investigate the dependence of the emitted radiation on laser parameters and hydrostatic pressure.It has been found,that higher laser pulse energies,especially with short pulse delay as required in high water pressure,can also have an adverse effect on the measured spectrum.展开更多
Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity ...Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity of temperature distribution in microsystems,making precise temperature control for electronic components extremely challenging.Herein,we report an on-chip micro temperature controller including a pair of thermoelectric legs with a total area of 50×50μm^(2),which are fabricated from dense and flat freestanding Bi2Te3-based ther-moelectric nano films deposited on a newly developed nano graphene oxide membrane substrate.Its tunable equivalent thermal resistance is controlled by electrical currents to achieve energy-efficient temperature control for low-power electronics.A large cooling temperature difference of 44.5 K at 380 K is achieved with a power consumption of only 445μW,resulting in an ultrahigh temperature control capability over 100 K mW^(-1).Moreover,an ultra-fast cooling rate exceeding 2000 K s^(-1) and excellent reliability of up to 1 million cycles are observed.Our proposed on-chip temperature controller is expected to enable further miniaturization and multifunctional integration on a single chip for microelectronics.展开更多
Addiction has been extensively studied on many levels:from the molecular level,with various“omics”approaches(Natividad et al.,2018;Grecco et al.,2021),to the clinical level,with psychotherapy and MRI imaging(Ceceli ...Addiction has been extensively studied on many levels:from the molecular level,with various“omics”approaches(Natividad et al.,2018;Grecco et al.,2021),to the clinical level,with psychotherapy and MRI imaging(Ceceli et al.,2022).展开更多
The demand for electronic devices that utilize lithium is steadily increasing in this rapidly advancing technological world.Obtaining high-purity lithium in an environmentally friendly way is challenging by using comm...The demand for electronic devices that utilize lithium is steadily increasing in this rapidly advancing technological world.Obtaining high-purity lithium in an environmentally friendly way is challenging by using commercialized methods.Herein,we propose the first fuel cell system for continuous lithium-ion extraction using a lithium superionic conductor membrane and advanced electrode.The fuel cell system for extracting lithium-ion has demonstrated a twofold increase in the selectivity of Li^(+)/Na^(+)while producing electricity.Our data show that the fuel cell with a titania-coated electrode achieves 95%lithium-ion purity while generating 10.23 Wh of energy per gram of lithium.Our investigation revealed that using atomic layer deposition improved the electrode's uniformity,stability,and electrocatalytic activity.After 2000 cycles determined by cyclic voltammetry,the electrode preserved its stability.展开更多
The agricultural production space,as where and how much each agricultural product grows,plays a vital role in meeting the increasing and diverse food demands.Previous studies on agricultural production patterns have p...The agricultural production space,as where and how much each agricultural product grows,plays a vital role in meeting the increasing and diverse food demands.Previous studies on agricultural production patterns have predominantly centered on individual or specific crop types,using methods such as remote sensing or statistical metrological analysis.In this study,we characterize the agricultural production space(APS)by bipartite network connecting agricultural products and provinces,to reveal the relatedness between diverse agricultural products and the spatiotemporal characteristic of provincial production capabilities in China.The results show that core products are cereal,pork,melon,and pome fruit;meanwhile the milk,grape,and fiber crop show an upward trend in centrality,which is in line with diet structure changes in China over the past decades.The little changes in community components and structures of agricultural products and provinces reveal that agricultural production patterns in China are relatively stable.Additionally,identified provincial communities closely resemble China's agricultural natural zones.Furthermore,the observed growth in production capabilities in North and Northeast China implies their potential focus areas for future agricultural production.Despite the superior production capa-bilities of southern provinces,recent years have witnessed a notable decline,warranting special attentions.The findings provide a comprehensive perspective for understanding the complex relationship of agricultural prod-ucts'relatedness,production capabilities and production patterns,which serve as a reference for the agricultural spatial optimization and agricultural sustainable development.展开更多
Carotenoids and chlorophylls are among the most widely distributed pigments in nature that play essential roles in the photosynthetic apparatus and confer diverse colours in plants.Among all vegetables,cauliflower(Bra...Carotenoids and chlorophylls are among the most widely distributed pigments in nature that play essential roles in the photosynthetic apparatus and confer diverse colours in plants.Among all vegetables,cauliflower(Brassica oleracea L.ssp.var.botrytis)is rich in phytochemicals and is an important crop grown all over the world.This study investigates carotenoid and chlorophyll concentrations in differently pigmented cultivars and elucidates the role of transcriptional regulation of carotenoid accumulation including lutein andβ-carotene.Here,we characterised changes in pigments by UHPLC-DAD-ToF-MS and changes in transcript levels of carotenoid metabolic genes by qRT-PCR in florets and leaves of orange(‘Jaffa'and‘Sunset'),purple(‘Di Sicilia Violetto'and‘Graffiti'),green(‘Trevi')and white(‘Clapton')cultivars.Transcript levels of all carotenoid metabolic genes showed different transcript level patterns in the leaves and florets.Compared to the other cultivars,the orange cultivars had the highest levels ofβ-carotene in the florets and lutein in the leaves resulting in changes lutein/β-carotene ratios.In the green cultivar,higher transcript levels were also found,especially for phytoene synthase and phytoene desaturase genes of the core biosynthesis pathway.However,no increased carotenoid concentrations were observed,possibly due to a higher carotenoid turnover induced by the carotenoid cleavage dioxygenase 4 in the green cultivar.In the white(‘Clapton')and purple(‘Di Sicilia Violetto'and‘Graffiti')cultivars the phytoene desaturase transcript levels as well as carotenoid concentrations were low.Chlorophyll concentrations changed in trend comparable to the carotenoid concentrations and were only significantly lower in the leaves of the orange cultivar‘Jaffa'.Also,the chlorophyll a/b ratio changed in‘Jaffa'.In florets the highest chlorophylls concentrations were observed for the green cultivar(‘Trevi')and the purple cultivar(‘Di Sicilia Violetto').Taken together,the study demonstrates the complex source-sink relationship of carotenoid accumulation in different coloured cauliflower.展开更多
Plant formation from in vitro-cultivated microspores involves a complex network of internal and environmental factors.Haploids/doubled haploids(DHs)derived from in vitro-cultured microspores are widely used in plant b...Plant formation from in vitro-cultivated microspores involves a complex network of internal and environmental factors.Haploids/doubled haploids(DHs)derived from in vitro-cultured microspores are widely used in plant breeding and genetic engineering.However,the mechanism underlying the developmental switch from regular pollen maturation towards microspore-derived plant regeneration remains poorly defined.Here,RNA-sequencing was employed to elucidate the transcriptional landscapes of four early stages of microspore embryogenesis(ME)in barley cultivars Golden Promise and Igri,which exhibit contrasting responsiveness to microspore-derived plant formation.Our experiments revealed fundamental regulatory networks,specific groups of genes,and transcription factor(TF)families potentially regulating the developmental switch.We identified a set of candidate genes crucial for genotype-dependent responsiveness/recalcitrance to ME.Our high-resolution temporal transcriptome atlas provides an important resource for future functional studies on the genetic control of microspore developmental transition.展开更多
Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio fre...Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio frequencies and impact research activities and our daily lives.Traditional glass lenses are fabricated through a series of complex processes,while polymers offer versatility and ease of production.However,modern applications often require complex lens assemblies,driving the need for miniaturization and advanced designs with micro-and nanoscale features to surpass the capabilities of traditional fabrication methods.Three-dimensional(3D)printing,or additive manufacturing,presents a solution to these challenges with benefits of rapid prototyping,customized geometries,and efficient production,particularly suited for miniaturized optical imaging devices.Various 3D printing methods have demonstrated advantages over traditional counterparts,yet challenges remain in achieving nanoscale resolutions.Two-photon polymerization lithography(TPL),a nanoscale 3D printing technique,enables the fabrication of intricate structures beyond the optical diffraction limit via the nonlinear process of two-photon absorption within liquid resin.It offers unprecedented abilities,e.g.alignment-free fabrication,micro-and nanoscale capabilities,and rapid prototyping of almost arbitrary complex 3D nanostructures.In this review,we emphasize the importance of the criteria for optical performance evaluation of imaging devices,discuss material properties relevant to TPL,fabrication techniques,and highlight the application of TPL in optical imaging.As the first panoramic review on this topic,it will equip researchers with foundational knowledge and recent advancements of TPL for imaging optics,promoting a deeper understanding of the field.By leveraging on its high-resolution capability,extensive material range,and true 3D processing,alongside advances in materials,fabrication,and design,we envisage disruptive solutions to current challenges and a promising incorporation of TPL in future optical imaging applications.展开更多
Nitrous oxide(N_(2)O)is a long-lived greenhouse gas that mainly originates from agricultural soils.More and more studies have explored the sources,influencing factors and effective mitigation measures of N_(2)O in rec...Nitrous oxide(N_(2)O)is a long-lived greenhouse gas that mainly originates from agricultural soils.More and more studies have explored the sources,influencing factors and effective mitigation measures of N_(2)O in recent decades.However,the hierarchy of factors influencing N_(2)O emissions from agricultural soils at the global scale remains unclear.In this study,we carry out correlation and structural equation modeling analysis on a global N_(2)O emission dataset to explore the hierarchy of influencing factors affecting N_(2)O emissions from the nitrogen(N)and non-N fertilized upland farming systems,in terms of climatic factors,soil properties,and agricultural practices.Our results show that the average N_(2)O emission intensity in the N fertilized soils(17.83 g N ha^(-1)d^(-1))was significantly greater than that in the non-N fertilized soils(5.34 g N ha^(−1) d^(−1))(p<0.001).Climate factors and agricultural practices are the most important influencing factors on N_(2)O emission in non-N and N fertilized upland soils,respectively.For different climatic zones,without fertilizer,the primary influence factors on soil N_(2)O emissions are soil physical properties in subtropical monsoon zone,whereas climatic factors are key in the temperate zones.With fertilizer,the primary influence factors for subtropical monsoon and temperate continental zones are soil physical properties,while agricultural measures are the main factors in the temperate monsoon zone.Deploying enhanced agricultural practices,such as reduced N fertilizer rate combined with the addition of nitrification and urease inhibitors can potentially mitigate N_(2)O emissions by more than 60%in upland farming systems.展开更多
Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite...Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite the significant advancements in LAM of Ti alloys,there remain challenges that need further research and development efforts.To recap the potential of LAM high-performance Ti alloy,this article systematically reviews LAM Ti alloys with up-to-date information on process,materials,and properties.Several feasible solutions to advance LAM Ti alloys are reviewed,including intelligent process parameters optimization,LAM process innovation with auxiliary fields and novel Ti alloys customization for LAM.The auxiliary energy fields(e.g.thermal,acoustic,mechanical deformation and magnetic fields)can affect the melt pool dynamics and solidification behaviour during LAM of Ti alloys,altering microstructures and mechanical performances.Different kinds of novel Ti alloys customized for LAM,like peritecticα-Ti,eutectoid(α+β)-Ti,hybrid(α+β)-Ti,isomorphousβ-Ti and eutecticβ-Ti alloys are reviewed in detail.Furthermore,machine learning in accelerating the LAM process optimization and new materials development is also outlooked.This review summarizes the material properties and performance envelops and benchmarks the research achievements in LAM of Ti alloys.In addition,the perspectives and further trends in LAM of Ti alloys are also highlighted.展开更多
Life exists in the universe and therefore the astrophysical properties of the universe must be such that they allow the origin of life. We connect astrobiology and astrophysics via one astrobiological quantity—the pr...Life exists in the universe and therefore the astrophysical properties of the universe must be such that they allow the origin of life. We connect astrobiology and astrophysics via one astrobiological quantity—the probability of the origin of life. We show how this probability, if it is very low, will allow us to answer profound astrophysical questions such as the type of universe we live in, the fate of our universe, whether neutron stars, white and brown dwarfs evaporate and whether protons decay.展开更多
The tree shrew(Tupaia belangeri)has long been proposed as a suitable alternative to non-human primates(NHPs)in biomedical and laboratory research due to its close evolutionary relationship with primates.In recent year...The tree shrew(Tupaia belangeri)has long been proposed as a suitable alternative to non-human primates(NHPs)in biomedical and laboratory research due to its close evolutionary relationship with primates.In recent years,significant advances have facilitated tree shrew studies,including the determination of the tree shrew genome,genetic manipulation using spermatogonial stem cells,viral vector-mediated gene delivery,and mapping of the tree shrew brain atlas.However,the limited availability of tree shrews globally remains a substantial challenge in the field.Additionally,determining the key questions best answered using tree shrews constitutes another difficulty.Tree shrew models have historically been used to study hepatitis B virus(HBV)and hepatitis C virus(HCV)infection,myopia,and psychosocial stress-induced depression,with more recent studies focusing on developing animal models for infectious and neurodegenerative diseases.Despite these efforts,the impact of tree shrew models has not yet matched that of rodent or NHP models in biomedical research.This review summarizes the prominent advancements in tree shrew research and reflects on the key biological questions addressed using this model.We emphasize that intensive dedication and robust international collaboration are essential for achieving breakthroughs in tree shrew studies.The use of tree shrews as a unique resource is expected to gain considerable attention with the application of advanced techniques and the development of viable animal models,meeting the increasing demands of life science and biomedical research.展开更多
The main function of neurons is information transmission in the form of action potentials.To fulfill this duty,neurons are connected functionally with each other via synapses,the microscopic structures where specializ...The main function of neurons is information transmission in the form of action potentials.To fulfill this duty,neurons are connected functionally with each other via synapses,the microscopic structures where specialized molecular machinery is strategically placed to release and receive neurotransmitters and to generate and extinguish calcium(Ca^(2+))signals.These synaptic molecular components are highly dynamic and they influence each other to confer structural and functional adaptability(plasticity)to neuronal communication(Biederer et al.,2017).展开更多
To extend the contemporary understanding into the grain yield heterosis of wheat, the current study investigated the contribution of deleterious alleles in shaping mid-parent heterosis(MPH). These alleles occur at low...To extend the contemporary understanding into the grain yield heterosis of wheat, the current study investigated the contribution of deleterious alleles in shaping mid-parent heterosis(MPH). These alleles occur at low frequency in the genome and are often missed by automated genotyping platforms like SNP arrays. The deleterious alleles herein were detected using a quantitative measurement of evolutionary conservation based on the phylogeny of wheat and investigations were made to:(1) assess the benefit of including deleterious alleles into MPH prediction models and(2) understand the genetic underpinnings of deleterious SNPs for grain yield MPH using contrasting crosses viz. elite × elite(Exp. 1) and elite × plant genetic resources(PGR;Exp. 2). In our study, we found a lower allele frequency of moderately deleterious alleles in elites compared to PGRs. This highlights the role of purifying selection for the development of elite wheat cultivars. It was shown that deleterious alleles are informative for MPH prediction models: modelling their additive-by-additive effects in Exp. 1 and dominance as well as associated digenic epistatic effects in Exp. 2 significantly boosts prediction accuracies of MPH. Furthermore,heterotic-quantitative trait loci's underlying MPH was investigated and their properties were contrasted in the two crosses. Conclusively, it was proposed that incomplete dominance of deleterious alleles contributes to grain yield heterosis in elite crosses(Exp. 1).展开更多
Background Spermatozoa interact with oviduct secretions before fertilization in vivo but the molecular players of this dialog and underlying dynamics remain largely unknown.Our objectives were to identify an exhaustiv...Background Spermatozoa interact with oviduct secretions before fertilization in vivo but the molecular players of this dialog and underlying dynamics remain largely unknown.Our objectives were to identify an exhaustive list of sperm-interacting proteins(SIPs)in the bovine oviduct fluid and to evaluate the impact of the oviduct anatomical region(isthmus vs.ampulla)and time relative to ovulation(pre-ovulatory vs.post-ovulatory)on SIPs number and abundance.Methods Pools of oviduct fluid(OF)from the pre-ovulatory ampulla,pre-ovulatory isthmus,post-ovulatory ampulla,and post-ovulatory isthmus in the side of ovulation were collected from the slaughterhouse.Frozen-thawed bull sperm were incubated with OF or phosphate-buffered saline(control)for 60 min at 38.5℃.After protein extraction and digestion,sperm and OF samples were analyzed by nanoLC-MS/MS and label-free protein quantification.Results A quantitative comparison between proteins identified in sperm and OF samples(2333 and 2471 proteins,respectively)allowed for the identification of 245 SIPs.The highest number(187)were found in the pre-ovulatory isthmus,i.e.,time and place of the sperm reservoir.In total,41 SIPs(17%)were differentially abundant between stages in a given region or between regions at a given stage and 76 SIPs(31%)were identified in only one region×stage condition.Functional analysis of SIPs predicted roles in cell response to stress,regulation of cell motility,fertilization,and early embryo development.Conclusion This study provides a comprehensive list of SIPs in the bovine oviduct and evidences dynamic spatiotemporal changes in sperm-oviduct interactions around ovulation time.Moreover,these data provide protein candidates to improve sperm conservation and in vitro fertilization media.展开更多
基金This work was supported by the Qinchuangyuan Project of Shaanxi Province,China(QCYRCXM-2022-145)the Major Project of the Key Research Base of Humanities and Social Sciences of the Ministry of Education,China(22JJD790052)+1 种基金the Chinese Universities Scientific Fund(Z1010422003)the National Natural Science Foundation of China(72373117).
文摘With increasing population and changing demographics,food consumption has experienced a significant transition in quantity and quality.However,a dearth of knowledge remains regarding its environmental impacts and how it responds to demographic dynamics,particularly in emerging economies like China.Using the two-stage Quadratic Almost Demand System(QUAIDS)model,this study empirically examines the impact of demographic dynamics on food consumption and its environmental outcomes based on the provincial data from 2000 to 2020 in China.Under various scenarios,according to changes in demographics,we extend our analysis to project the long-term trend of food consumption and its environmental impacts,including greenhouse gas(GHG)emissions,water footprint(WF),and land appropriation(LA).The results reveal that an increase in the proportion of senior people significantly decreases the consumption of grain and livestock meat and increases the consumption of poultry,egg,and aquatic products,particularly for urban residents.Moreover,an increase in the proportion of males in the population leads to higher consumption of poultry and aquatic products.Correspondingly,in the current scenario of an increased aging population and sex ratio,it is anticipated that GHG emissions,WF,and LA are likely to decrease by 1.37,2.52,and 3.56%,respectively.More importantly,in the scenario adhering to the standards of nutritional intake according to the Dietary Guidelines for Chinese Residents in 2022,GHG emissions,WF,and LA in urban areas would increase by 12.78,20.94,and 18.32%,respectively.Our findings suggest that changing demographics should be considered when designing policies to mitigate the diet-environment-health trilemma and achieve sustainable food consumption.
基金supported by the National Natural Science Foundation of China(72373117)the Chinese Universities Scientific Fund(Z1010422003)+1 种基金the Major Project of the Key Research Base of Humanities and Social Sciences of the Ministry of Education(22JJD790052)the Qinchuangyuan Project of Shaanxi Province(QCYRCXM-2022-145).
文摘Improving cultivated land use eco-efficiency(CLUE)can effectively promote agricultural sustainability,particularly in developing countries where CLUE is generally low.This study used provincial-level data from China to evaluate the spatiotemporal evolution of CLUE from 2000 to 2020 and identified the influencing factors of CLUE by using a panel Tobit model.In addition,given the undesirable outputs of agricultural production,we incorporated carbon emissions and nonpoint source pollution into the global benchmark-undesirable output-super efficiency-slacks-based measure(GB-US-SBM)model,which combines global benchmark technology,undesirable output,super efficiency,and slacks-based measure.The results indicated that there was an upward trend in CLUE in China from 2000 to 2020,with an increase rate of 2.62%.The temporal evolution of CLUE in China could be classified into three distinct stages:a period of fluctuating decrease(2000-2007),a phase of gradual increase(2008-2014),and a period of rapid growth(2015-2020).The major grain-producing areas(MPAs)had a lower CLUE than their counterparts,namely,non-major grain-production areas(non-MPAs).The spatial agglomeration effect followed a northeast-southwest strip distribution;and the movement path of barycentre revealed a"P"shape,with Luoyang City,Henan Province,as the centre.In terms of influencing factors of CLUE,investment in science and technology played the most vital role in improving CLUE,while irrigation index had the most negative effect.It should be noted that these two influencing factors had different impacts on MPAs and non-MPAs.Therefore,relevant departments should formulate policies to enhance the level of science and technology,improve irrigation condition,and promote sustainable utilization of cultivated land.
基金This study was supported in part by the National Natural Science Foundation of China(71973136 and 72061147002)the 2115 Talent Development Program of China Agricultural University.
文摘Over the past few decades,the Internet has rapidly diffused across China.The spread of the Internet has had a profound economic and social impact on Chinese rural areas.Existing research shows that Internet access significantly impacts agricultural production and improves smallholder farmers’income.Beyond these,the Internet can affect other dimensions of social welfare.However,research about the impact of Internet access on dietary quality in rural China remains scarce.This study utilizes multi-period panel data from Fixed Observation Point in rural China from 2009 to 2015 to estimate the impact of Internet access on dietary quality and food consumption of rural households and conducts a causal analysis.Regression models with time and household fixed effects allow robust estimation while reducing potential issues of unobserved heterogeneity.The estimates show that Internet access has significantly increased rural household dietary quality(measured by the Chinese Diet Balance Index).Further research finds that Internet access has increased the consumption of animal products,such as aquatic and dairy products.We also examine the underlying mechanisms.Internet access improves dietary quality and food consumption mainly through increasing household income and food expenditure.These results encourage the promotion of Internet access as a valuable tool for nutritional improvements,especially in rural areas.
基金funding within the Wheat BigData Project(German Federal Ministry of Food and Agriculture,FKZ2818408B18)。
文摘Genome-wide association mapping studies(GWAS)based on Big Data are a potential approach to improve marker-assisted selection in plant breeding.The number of available phenotypic and genomic data sets in which medium-sized populations of several hundred individuals have been studied is rapidly increasing.Combining these data and using them in GWAS could increase both the power of QTL discovery and the accuracy of estimation of underlying genetic effects,but is hindered by data heterogeneity and lack of interoperability.In this study,we used genomic and phenotypic data sets,focusing on Central European winter wheat populations evaluated for heading date.We explored strategies for integrating these data and subsequently the resulting potential for GWAS.Establishing interoperability between data sets was greatly aided by some overlapping genotypes and a linear relationship between the different phenotyping protocols,resulting in high quality integrated phenotypic data.In this context,genomic prediction proved to be a suitable tool to study relevance of interactions between genotypes and experimental series,which was low in our case.Contrary to expectations,fewer associations between markers and traits were found in the larger combined data than in the individual experimental series.However,the predictive power based on the marker-trait associations of the integrated data set was higher across data sets.Therefore,the results show that the integration of medium-sized to Big Data is an approach to increase the power to detect QTL in GWAS.The results encourage further efforts to standardize and share data in the plant breeding community.
基金funded by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)–Project No.454848899。
文摘Double-pulse LIBS is a promising technique for deep-sea applications.LIBS measurements in shallow water with up to 400 mJ each pulse were done to select laser parameters which promote optimized spectral line emission from plasma even at elevated pressures,where line broadening until loss of most of the spectral information can occur.Optical emission spectroscopy,using a Czerny-Turner spectrometer,has been applied to investigate the dependence of the emitted radiation on laser parameters and hydrostatic pressure.It has been found,that higher laser pulse energies,especially with short pulse delay as required in high water pressure,can also have an adverse effect on the measured spectrum.
基金The authors thank D.Berger,D.Hofmann and C.Kupka in IFW Dresden for helpful technical support.H.R.acknowledges funding from the DFG(Deutsche Forschungsgemeinschaft)within grant number RE3973/1-1.Q.J.,H.R.and K.N.conceived the work.With the support from N.Y.and X.J.,Q.J.and T.G.fabricated the thermoelectric films and conducted the structural and compositional characterizations.Q.J.prepared microchips and fabricated the on-chip micro temperature controllers.Q.J.and N.P.carried out the temperature-dependent material and device performance measurements.Q.J.and H.R.performed the simulation and analytical calculations.Q.J.,H.R.and K.N.wrote the manuscript with input from the other coauthors.All the authors discussed the results and commented on the manuscript.
文摘Multidimensional integration and multifunctional com-ponent assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics.However,this inevitably exac-erbates the inhomogeneity of temperature distribution in microsystems,making precise temperature control for electronic components extremely challenging.Herein,we report an on-chip micro temperature controller including a pair of thermoelectric legs with a total area of 50×50μm^(2),which are fabricated from dense and flat freestanding Bi2Te3-based ther-moelectric nano films deposited on a newly developed nano graphene oxide membrane substrate.Its tunable equivalent thermal resistance is controlled by electrical currents to achieve energy-efficient temperature control for low-power electronics.A large cooling temperature difference of 44.5 K at 380 K is achieved with a power consumption of only 445μW,resulting in an ultrahigh temperature control capability over 100 K mW^(-1).Moreover,an ultra-fast cooling rate exceeding 2000 K s^(-1) and excellent reliability of up to 1 million cycles are observed.Our proposed on-chip temperature controller is expected to enable further miniaturization and multifunctional integration on a single chip for microelectronics.
文摘Addiction has been extensively studied on many levels:from the molecular level,with various“omics”approaches(Natividad et al.,2018;Grecco et al.,2021),to the clinical level,with psychotherapy and MRI imaging(Ceceli et al.,2022).
文摘The demand for electronic devices that utilize lithium is steadily increasing in this rapidly advancing technological world.Obtaining high-purity lithium in an environmentally friendly way is challenging by using commercialized methods.Herein,we propose the first fuel cell system for continuous lithium-ion extraction using a lithium superionic conductor membrane and advanced electrode.The fuel cell system for extracting lithium-ion has demonstrated a twofold increase in the selectivity of Li^(+)/Na^(+)while producing electricity.Our data show that the fuel cell with a titania-coated electrode achieves 95%lithium-ion purity while generating 10.23 Wh of energy per gram of lithium.Our investigation revealed that using atomic layer deposition improved the electrode's uniformity,stability,and electrocatalytic activity.After 2000 cycles determined by cyclic voltammetry,the electrode preserved its stability.
基金supported by the Institute of Atmospheric Environment,China Meteorological Administration,Shenyang(Grant No.2021SYIAEKFMS27)Key Laboratory of Farm Building in Structure and Construction,Ministry of Agriculture and Rural Affairs,P.R.China(Grant No.202003)the National Foundation of China Scholarship Council(Grant No.202206040102).
文摘The agricultural production space,as where and how much each agricultural product grows,plays a vital role in meeting the increasing and diverse food demands.Previous studies on agricultural production patterns have predominantly centered on individual or specific crop types,using methods such as remote sensing or statistical metrological analysis.In this study,we characterize the agricultural production space(APS)by bipartite network connecting agricultural products and provinces,to reveal the relatedness between diverse agricultural products and the spatiotemporal characteristic of provincial production capabilities in China.The results show that core products are cereal,pork,melon,and pome fruit;meanwhile the milk,grape,and fiber crop show an upward trend in centrality,which is in line with diet structure changes in China over the past decades.The little changes in community components and structures of agricultural products and provinces reveal that agricultural production patterns in China are relatively stable.Additionally,identified provincial communities closely resemble China's agricultural natural zones.Furthermore,the observed growth in production capabilities in North and Northeast China implies their potential focus areas for future agricultural production.Despite the superior production capa-bilities of southern provinces,recent years have witnessed a notable decline,warranting special attentions.The findings provide a comprehensive perspective for understanding the complex relationship of agricultural prod-ucts'relatedness,production capabilities and production patterns,which serve as a reference for the agricultural spatial optimization and agricultural sustainable development.
基金supported by the Federal Office for Agriculture and Food(BLE)of Germany[Grant No.2816DOKI07(Carcauli)]。
文摘Carotenoids and chlorophylls are among the most widely distributed pigments in nature that play essential roles in the photosynthetic apparatus and confer diverse colours in plants.Among all vegetables,cauliflower(Brassica oleracea L.ssp.var.botrytis)is rich in phytochemicals and is an important crop grown all over the world.This study investigates carotenoid and chlorophyll concentrations in differently pigmented cultivars and elucidates the role of transcriptional regulation of carotenoid accumulation including lutein andβ-carotene.Here,we characterised changes in pigments by UHPLC-DAD-ToF-MS and changes in transcript levels of carotenoid metabolic genes by qRT-PCR in florets and leaves of orange(‘Jaffa'and‘Sunset'),purple(‘Di Sicilia Violetto'and‘Graffiti'),green(‘Trevi')and white(‘Clapton')cultivars.Transcript levels of all carotenoid metabolic genes showed different transcript level patterns in the leaves and florets.Compared to the other cultivars,the orange cultivars had the highest levels ofβ-carotene in the florets and lutein in the leaves resulting in changes lutein/β-carotene ratios.In the green cultivar,higher transcript levels were also found,especially for phytoene synthase and phytoene desaturase genes of the core biosynthesis pathway.However,no increased carotenoid concentrations were observed,possibly due to a higher carotenoid turnover induced by the carotenoid cleavage dioxygenase 4 in the green cultivar.In the white(‘Clapton')and purple(‘Di Sicilia Violetto'and‘Graffiti')cultivars the phytoene desaturase transcript levels as well as carotenoid concentrations were low.Chlorophyll concentrations changed in trend comparable to the carotenoid concentrations and were only significantly lower in the leaves of the orange cultivar‘Jaffa'.Also,the chlorophyll a/b ratio changed in‘Jaffa'.In florets the highest chlorophylls concentrations were observed for the green cultivar(‘Trevi')and the purple cultivar(‘Di Sicilia Violetto').Taken together,the study demonstrates the complex source-sink relationship of carotenoid accumulation in different coloured cauliflower.
基金funded by National Science Center in Poland Grant (2015/18/M/NZ3/00348) to Iwona·Zursupported by Czech Science Foundation Grant (21-02929S) to Ales Pecinka+2 种基金European Regional Development Fund project TANGENC (CZ.02.01.01/00/ 22_008/0004581)funded by Ad Agri F (CZ.02.01.01/00/22_008/0004635)supplied by the project “e-Infrastruktura CZ” (e-INFRA CZ LM2018140) supported by the Ministry of Education, Youth and Sports of the Czech Republic
文摘Plant formation from in vitro-cultivated microspores involves a complex network of internal and environmental factors.Haploids/doubled haploids(DHs)derived from in vitro-cultured microspores are widely used in plant breeding and genetic engineering.However,the mechanism underlying the developmental switch from regular pollen maturation towards microspore-derived plant regeneration remains poorly defined.Here,RNA-sequencing was employed to elucidate the transcriptional landscapes of four early stages of microspore embryogenesis(ME)in barley cultivars Golden Promise and Igri,which exhibit contrasting responsiveness to microspore-derived plant formation.Our experiments revealed fundamental regulatory networks,specific groups of genes,and transcription factor(TF)families potentially regulating the developmental switch.We identified a set of candidate genes crucial for genotype-dependent responsiveness/recalcitrance to ME.Our high-resolution temporal transcriptome atlas provides an important resource for future functional studies on the genetic control of microspore developmental transition.
基金support from the National Research Foundation (NRF) Singapore, under its Competitive Research Programme Award NRF-CRP20-20170004 and NRF Investigatorship Award NRF-NRFI06-20200005MTC Programmatic Grant M21J9b0085, as well as the Lite-On Project RS-INDUS-00090+5 种基金support from Australian Research Council (DE220101085, DP220102152)grants from German Research Foundation (SCHM2655/15-1, SCHM2655/21-1)Lee-Lucas Chair in Physics and funding by the Australian Research Council DP220102152financial support from the National Natural Science Foundation of China (Grant No. 62275078)Natural Science Foundation of Hunan Province of China (Grant No. 2022JJ20020)Shenzhen Science and Technology Program (Grant No. JCYJ20220530160405013)
文摘Optical imaging systems have greatly extended human visual capabilities,enabling the observation and understanding of diverse phenomena.Imaging technologies span a broad spectrum of wavelengths from x-ray to radio frequencies and impact research activities and our daily lives.Traditional glass lenses are fabricated through a series of complex processes,while polymers offer versatility and ease of production.However,modern applications often require complex lens assemblies,driving the need for miniaturization and advanced designs with micro-and nanoscale features to surpass the capabilities of traditional fabrication methods.Three-dimensional(3D)printing,or additive manufacturing,presents a solution to these challenges with benefits of rapid prototyping,customized geometries,and efficient production,particularly suited for miniaturized optical imaging devices.Various 3D printing methods have demonstrated advantages over traditional counterparts,yet challenges remain in achieving nanoscale resolutions.Two-photon polymerization lithography(TPL),a nanoscale 3D printing technique,enables the fabrication of intricate structures beyond the optical diffraction limit via the nonlinear process of two-photon absorption within liquid resin.It offers unprecedented abilities,e.g.alignment-free fabrication,micro-and nanoscale capabilities,and rapid prototyping of almost arbitrary complex 3D nanostructures.In this review,we emphasize the importance of the criteria for optical performance evaluation of imaging devices,discuss material properties relevant to TPL,fabrication techniques,and highlight the application of TPL in optical imaging.As the first panoramic review on this topic,it will equip researchers with foundational knowledge and recent advancements of TPL for imaging optics,promoting a deeper understanding of the field.By leveraging on its high-resolution capability,extensive material range,and true 3D processing,alongside advances in materials,fabrication,and design,we envisage disruptive solutions to current challenges and a promising incorporation of TPL in future optical imaging applications.
基金financially supported by the National Natural Science Foundation of China (Grant No. 42161144002)the National Key Research and Development Programs of China (Grant No. 2022YFE0209200-03)+1 种基金the Suzhou Agricultural Science, Technology and Innovation Programs of Suzhou Agricultural Department (Grant No. SNG2022011)the special fund of State Environmental Protection Key Laboratory of Formation and Prevention of the Urban Air Pollution Complex (SEPAir2022080590)
文摘Nitrous oxide(N_(2)O)is a long-lived greenhouse gas that mainly originates from agricultural soils.More and more studies have explored the sources,influencing factors and effective mitigation measures of N_(2)O in recent decades.However,the hierarchy of factors influencing N_(2)O emissions from agricultural soils at the global scale remains unclear.In this study,we carry out correlation and structural equation modeling analysis on a global N_(2)O emission dataset to explore the hierarchy of influencing factors affecting N_(2)O emissions from the nitrogen(N)and non-N fertilized upland farming systems,in terms of climatic factors,soil properties,and agricultural practices.Our results show that the average N_(2)O emission intensity in the N fertilized soils(17.83 g N ha^(-1)d^(-1))was significantly greater than that in the non-N fertilized soils(5.34 g N ha^(−1) d^(−1))(p<0.001).Climate factors and agricultural practices are the most important influencing factors on N_(2)O emission in non-N and N fertilized upland soils,respectively.For different climatic zones,without fertilizer,the primary influence factors on soil N_(2)O emissions are soil physical properties in subtropical monsoon zone,whereas climatic factors are key in the temperate zones.With fertilizer,the primary influence factors for subtropical monsoon and temperate continental zones are soil physical properties,while agricultural measures are the main factors in the temperate monsoon zone.Deploying enhanced agricultural practices,such as reduced N fertilizer rate combined with the addition of nitrification and urease inhibitors can potentially mitigate N_(2)O emissions by more than 60%in upland farming systems.
基金financially supported by the Young Individual Research Grants(Grant No:M22K3c0097)Singapore RIE 2025 plan and Singapore Aerospace Programme Cycle 16(Grant No:M2215a0073)led by C Tan+2 种基金supported by the Singapore A*STAR Career Development Funds(Grant No:C210812047)the National Natural Science Foundation of China(52174361 and 52374385)the support by US NSF DMR-2104933。
文摘Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite the significant advancements in LAM of Ti alloys,there remain challenges that need further research and development efforts.To recap the potential of LAM high-performance Ti alloy,this article systematically reviews LAM Ti alloys with up-to-date information on process,materials,and properties.Several feasible solutions to advance LAM Ti alloys are reviewed,including intelligent process parameters optimization,LAM process innovation with auxiliary fields and novel Ti alloys customization for LAM.The auxiliary energy fields(e.g.thermal,acoustic,mechanical deformation and magnetic fields)can affect the melt pool dynamics and solidification behaviour during LAM of Ti alloys,altering microstructures and mechanical performances.Different kinds of novel Ti alloys customized for LAM,like peritecticα-Ti,eutectoid(α+β)-Ti,hybrid(α+β)-Ti,isomorphousβ-Ti and eutecticβ-Ti alloys are reviewed in detail.Furthermore,machine learning in accelerating the LAM process optimization and new materials development is also outlooked.This review summarizes the material properties and performance envelops and benchmarks the research achievements in LAM of Ti alloys.In addition,the perspectives and further trends in LAM of Ti alloys are also highlighted.
文摘Life exists in the universe and therefore the astrophysical properties of the universe must be such that they allow the origin of life. We connect astrobiology and astrophysics via one astrobiological quantity—the probability of the origin of life. We show how this probability, if it is very low, will allow us to answer profound astrophysical questions such as the type of universe we live in, the fate of our universe, whether neutron stars, white and brown dwarfs evaporate and whether protons decay.
基金supported by the STI2030-Major Projects(2021ZD0200900 to Y.G.Y.)"Light of West China" Program of the Chinese Academy of Sciences(xbzg-zdsys-202302 to Y.G.Y.)
文摘The tree shrew(Tupaia belangeri)has long been proposed as a suitable alternative to non-human primates(NHPs)in biomedical and laboratory research due to its close evolutionary relationship with primates.In recent years,significant advances have facilitated tree shrew studies,including the determination of the tree shrew genome,genetic manipulation using spermatogonial stem cells,viral vector-mediated gene delivery,and mapping of the tree shrew brain atlas.However,the limited availability of tree shrews globally remains a substantial challenge in the field.Additionally,determining the key questions best answered using tree shrews constitutes another difficulty.Tree shrew models have historically been used to study hepatitis B virus(HBV)and hepatitis C virus(HCV)infection,myopia,and psychosocial stress-induced depression,with more recent studies focusing on developing animal models for infectious and neurodegenerative diseases.Despite these efforts,the impact of tree shrew models has not yet matched that of rodent or NHP models in biomedical research.This review summarizes the prominent advancements in tree shrew research and reflects on the key biological questions addressed using this model.We emphasize that intensive dedication and robust international collaboration are essential for achieving breakthroughs in tree shrew studies.The use of tree shrews as a unique resource is expected to gain considerable attention with the application of advanced techniques and the development of viable animal models,meeting the increasing demands of life science and biomedical research.
文摘The main function of neurons is information transmission in the form of action potentials.To fulfill this duty,neurons are connected functionally with each other via synapses,the microscopic structures where specialized molecular machinery is strategically placed to release and receive neurotransmitters and to generate and extinguish calcium(Ca^(2+))signals.These synaptic molecular components are highly dynamic and they influence each other to confer structural and functional adaptability(plasticity)to neuronal communication(Biederer et al.,2017).
基金supported by the German Federal Ministry of Food and Agriculture (FKZ2818408B18)the Federal Ministry of Education and Research of Germany (FKZ031B0184A, B)the China Scholarship Council (201906350045)。
文摘To extend the contemporary understanding into the grain yield heterosis of wheat, the current study investigated the contribution of deleterious alleles in shaping mid-parent heterosis(MPH). These alleles occur at low frequency in the genome and are often missed by automated genotyping platforms like SNP arrays. The deleterious alleles herein were detected using a quantitative measurement of evolutionary conservation based on the phylogeny of wheat and investigations were made to:(1) assess the benefit of including deleterious alleles into MPH prediction models and(2) understand the genetic underpinnings of deleterious SNPs for grain yield MPH using contrasting crosses viz. elite × elite(Exp. 1) and elite × plant genetic resources(PGR;Exp. 2). In our study, we found a lower allele frequency of moderately deleterious alleles in elites compared to PGRs. This highlights the role of purifying selection for the development of elite wheat cultivars. It was shown that deleterious alleles are informative for MPH prediction models: modelling their additive-by-additive effects in Exp. 1 and dominance as well as associated digenic epistatic effects in Exp. 2 significantly boosts prediction accuracies of MPH. Furthermore,heterotic-quantitative trait loci's underlying MPH was investigated and their properties were contrasted in the two crosses. Conclusively, it was proposed that incomplete dominance of deleterious alleles contributes to grain yield heterosis in elite crosses(Exp. 1).
基金funded by INRAE and Agence Nationale de la Recherche under the grant number ANR-18-CE92-0049supported by grants from Biogenouest+1 种基金Infrastructures en Biologie Santéet Agronomie (IBiSA)Conseil Régional de Bretagne awarded to Protim proteomics core facility。
文摘Background Spermatozoa interact with oviduct secretions before fertilization in vivo but the molecular players of this dialog and underlying dynamics remain largely unknown.Our objectives were to identify an exhaustive list of sperm-interacting proteins(SIPs)in the bovine oviduct fluid and to evaluate the impact of the oviduct anatomical region(isthmus vs.ampulla)and time relative to ovulation(pre-ovulatory vs.post-ovulatory)on SIPs number and abundance.Methods Pools of oviduct fluid(OF)from the pre-ovulatory ampulla,pre-ovulatory isthmus,post-ovulatory ampulla,and post-ovulatory isthmus in the side of ovulation were collected from the slaughterhouse.Frozen-thawed bull sperm were incubated with OF or phosphate-buffered saline(control)for 60 min at 38.5℃.After protein extraction and digestion,sperm and OF samples were analyzed by nanoLC-MS/MS and label-free protein quantification.Results A quantitative comparison between proteins identified in sperm and OF samples(2333 and 2471 proteins,respectively)allowed for the identification of 245 SIPs.The highest number(187)were found in the pre-ovulatory isthmus,i.e.,time and place of the sperm reservoir.In total,41 SIPs(17%)were differentially abundant between stages in a given region or between regions at a given stage and 76 SIPs(31%)were identified in only one region×stage condition.Functional analysis of SIPs predicted roles in cell response to stress,regulation of cell motility,fertilization,and early embryo development.Conclusion This study provides a comprehensive list of SIPs in the bovine oviduct and evidences dynamic spatiotemporal changes in sperm-oviduct interactions around ovulation time.Moreover,these data provide protein candidates to improve sperm conservation and in vitro fertilization media.