Early fault diagnosis of bearings is crucial for ensuring safe and reliable operations.Convolutional neural networks(CNNs)have achieved significant breakthroughs in machinery fault diagnosis.However,complex and varyin...Early fault diagnosis of bearings is crucial for ensuring safe and reliable operations.Convolutional neural networks(CNNs)have achieved significant breakthroughs in machinery fault diagnosis.However,complex and varying working conditions can lead to inter-class similarity and intra-class variability in datasets,making it more challenging for CNNs to learn discriminative features.Furthermore,CNNs are often considered“black boxes”and lack sufficient interpretability in the fault diagnosis field.To address these issues,this paper introduces a residual mixed domain attention CNN method,referred to as RMA-CNN.This method comprises multiple residual mixed domain attention modules(RMAMs),each employing one attention mechanism to emphasize meaningful features in both time and channel domains.This significantly enhances the network’s ability to learn fault-related features.Moreover,we conduct an in-depth analysis of the inherent feature learning mechanism of the attention module RMAM to improve the interpretability of CNNs in fault diagnosis applications.Experiments conducted on two datasets—a high-speed aeronautical bearing dataset and a motor bearing dataset—demonstrate that the RMA-CNN achieves remarkable results in diagnostic tasks.展开更多
Anomaly detection(AD)is an important task in a broad range of domains.A popular choice for AD are Deep Support Vector Data Description models.When learning such models,normal data is mapped close to and anomalous data...Anomaly detection(AD)is an important task in a broad range of domains.A popular choice for AD are Deep Support Vector Data Description models.When learning such models,normal data is mapped close to and anomalous data is mapped far from a center,in some latent space,enabling the construction of a sphere to separate both types of data.Empirically,it was observed:(i)that the center and radius of such sphere largely depend on the training data and model initialization which leads to difficulties when selecting a threshold,and(ii)that the center and radius of this sphere strongly impact the model AD performance on unseen data.In this work,a more robust AD solution is proposed that(i)defines a sphere with a fixed radius and margin in some latent space and(ii)enforces the encoder,which maps the input to a latent space,to encode the normal data in a small sphere and the anomalous data outside a larger sphere,with the same center.Experimental results indicate that the proposed algorithm attains higher performance compared to alternatives,and that the difference in size of the two spheres has a minor impact on the performance.展开更多
基金The authors would like to acknowledge the support of the China Scholarship Council,the Flemish Government under the“Onderzoeksprogramma Artificiële Intelligentie(AI)Vlaanderen”Program and the Research Foundation–Flanders(FWO)under the ROBUSTIFY research grant no.S006119N.
文摘Early fault diagnosis of bearings is crucial for ensuring safe and reliable operations.Convolutional neural networks(CNNs)have achieved significant breakthroughs in machinery fault diagnosis.However,complex and varying working conditions can lead to inter-class similarity and intra-class variability in datasets,making it more challenging for CNNs to learn discriminative features.Furthermore,CNNs are often considered“black boxes”and lack sufficient interpretability in the fault diagnosis field.To address these issues,this paper introduces a residual mixed domain attention CNN method,referred to as RMA-CNN.This method comprises multiple residual mixed domain attention modules(RMAMs),each employing one attention mechanism to emphasize meaningful features in both time and channel domains.This significantly enhances the network’s ability to learn fault-related features.Moreover,we conduct an in-depth analysis of the inherent feature learning mechanism of the attention module RMAM to improve the interpretability of CNNs in fault diagnosis applications.Experiments conducted on two datasets—a high-speed aeronautical bearing dataset and a motor bearing dataset—demonstrate that the RMA-CNN achieves remarkable results in diagnostic tasks.
基金This research received funding from the Flemish Government(AI Research Program)This research has received support of Flanders Make,the strategic research center for the manufacturing industry.
文摘Anomaly detection(AD)is an important task in a broad range of domains.A popular choice for AD are Deep Support Vector Data Description models.When learning such models,normal data is mapped close to and anomalous data is mapped far from a center,in some latent space,enabling the construction of a sphere to separate both types of data.Empirically,it was observed:(i)that the center and radius of such sphere largely depend on the training data and model initialization which leads to difficulties when selecting a threshold,and(ii)that the center and radius of this sphere strongly impact the model AD performance on unseen data.In this work,a more robust AD solution is proposed that(i)defines a sphere with a fixed radius and margin in some latent space and(ii)enforces the encoder,which maps the input to a latent space,to encode the normal data in a small sphere and the anomalous data outside a larger sphere,with the same center.Experimental results indicate that the proposed algorithm attains higher performance compared to alternatives,and that the difference in size of the two spheres has a minor impact on the performance.