期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Biodegradation Behavior of Starch in Simulated White Water System of Old Corrugated Cardboard Pulping Process 被引量:2
1
作者 Jinhuan Guo Liqin Liu +7 位作者 Xiaohong Zhang Zhengbai Cheng Shuangxi Nie Haibing Cao Na Li Md Manik Mian Xingye An Hongbin Liu 《Paper And Biomaterials》 CAS 2023年第1期50-62,共13页
Considering the serious barriers/issues induced by the accumulated starch generated in white water system of old corrugated cardboard(OCC)pulping process,large amounts of accumulated starch in white water would be dec... Considering the serious barriers/issues induced by the accumulated starch generated in white water system of old corrugated cardboard(OCC)pulping process,large amounts of accumulated starch in white water would be decomposed by microorganisms and could not be utilized,thereby resulting in severe resource wastage and environmental pollution.This study mainly explored the effects of biodegradation/hydrolysis conditions of the two types of starch substrates(native starch and enzymatically(α-amylase)hydrolyzed starch),which were treated via microorganism degradation within the simulated white water from OCC pulping system and their biodegradation products on the key properties were characterized via X-ray diffraction(XRD),Fourier-transform infrared spectroscopy(FT-IR),and gel permeation chromatography(GPC)technologies.The effects of system temperature,pH value,starch concentration,and biodegradation time on starch biodegradation ratio and the characteristics of obtained biodegradated products from the two types of starches were studied.In addition,the effect ofα-amylase dosage on the biodegradation ratio of enzymatically hydrolyzed starch and its properties was investigated.It was found that the native starch presented a maximal degradation ratio at a system temperature of 55℃and pH value range of 5-7,respectively,the corresponding starch concentration within simulated white water system was 200 mg/L.Whereas the enzymatically hydrolyzed starch exhibited a highest degradation ratio at a system temperature of 50℃and pH value of 5.5,respectively,and the corresponding starch concentration within simulated white water system was 100 mg/L.It was verified that native starch is more readily bio-hydrolyzed and biodegradation-susceptive by microorganisms in simulated white water system of OCC pulping process,while the enzymatically hydrolyzed starch exhibits better biodegradation/hydrolysis resistance to the microbial degradation than that of native starch.This study provides a practical and interesting approach to investigate the starch hydrolysis or biodegradation behaviors in white water system of OCC pulping process,which would greatly contribute to the full recycling and valorized application of starch as a versatile additive during paperboard production. 展开更多
关键词 STARCH OCC pulping white water SIMULATION hydrolysis resistance biodegradation behavior
下载PDF
Starch-based Surface-sizing Agents in Paper Industry:An Overview 被引量:2
2
作者 Qiulin Wei Hao Zheng +3 位作者 Mengni Zhu Xiao Han Yao Li Jinghui Zhou 《Paper And Biomaterials》 CAS 2021年第4期54-61,共8页
Natural starch is an abundant and inexpensive polysaccharide biopolymer that is widely used as a surface-sizing agent in the paper industry.The surface sizing of paper improves its water and abrasion resistance,as wel... Natural starch is an abundant and inexpensive polysaccharide biopolymer that is widely used as a surface-sizing agent in the paper industry.The surface sizing of paper improves its water and abrasion resistance,as well as its physical strength and printing adaptability.However,natural starch presents some disadvantages,such as high viscosity,poor fluidity,poor filmforming properties,and easy coagulation.Therefore,starch is usually modified and blended with various components to achieve better sizing performance.This article reviews approaches for the surface sizing of paper and modification of starch using enzymes or chemical methods,such as oxidation,cationization,and graft copolymerization.This article also discusses the application of starch-based multiphase systems(obtained by blending starch with various components)as surface-sizing agents. 展开更多
关键词 STARCH surface sizing of paper modified starch starch-based multiphase system
下载PDF
Recent progress on the pretreatment and fractionation of lignocelluloses for biorefinery at QIBEBT
3
作者 Bin Li Chao Liu +4 位作者 Guang Yu Yuedong Zhang Haisong Wang Xindong Mu Hui Peng 《Journal of Bioresources and Bioproducts》 EI 2017年第1期4-9,共6页
Pretreatment and fractionation are amongst the key steps for the conversion of lignocelluloses to sustainable biofuels,biomaterials or biochemicals,as pretreatment/fractionation can break the natural recalcitrance of ... Pretreatment and fractionation are amongst the key steps for the conversion of lignocelluloses to sustainable biofuels,biomaterials or biochemicals,as pretreatment/fractionation can break the natural recalcitrance of lignocelluloses,improving the conversion efficiency of downstream processes.This paper reviews the recent progress on the pretreatment and fractionation of lignocelluloses for biorefinery at the Chinese Academy of Sciences-Qingdao Institute of Bioenergy and Bioprocess Technology(QIBEBT).The main technologies developed at the QIBEBT in recent years include alkaline twin-screw extrusion pretreatment,modified alkali pretreatment,hydrogen peroxide-assisted sodium carbonate pretreatment,fractionation with formic acid,as well as the two-step fractionation by hot water treatment coupling ammonium sulfite treatment.With the development of these technologies,a pilot scale platform for the pretreatment and saccharification of biomass has been established in the pilot plant of QIBEBT. 展开更多
关键词 BIOMASS PRETREATMENT FRACTIONATION Sustainable biofuels Value added products
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部