期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Fundamental Study of Rare-earth-containing Catalytic Reduction Systems for End-group Functionalization of Telechelic Low-molecular-weight Fluoropolymers
1
作者 LI Donghan NING Shurui +4 位作者 YU Lu LIAO Mingyi ZHANG Mengxia YOU Shibo FANG Qinghong 《材料导报》 北大核心 2025年第3期254-262,共9页
Herein the use of rare-earth compounds in catalytic reduction systems for the end-group functionalization of carboxyl-terminated low-molecularweight fluoropolymers was explored.Leveraging the high catalytic activity a... Herein the use of rare-earth compounds in catalytic reduction systems for the end-group functionalization of carboxyl-terminated low-molecularweight fluoropolymers was explored.Leveraging the high catalytic activity and selectivity of rare-earth compounds along with no residual impact on polymer product's performance,highly efficient catalytic reduction systems containing sodium borohydride(NaBH_(4))and rare-earth chloride(RECl_(3))were specifically designed for a telechelic carboxyl-terminated liquid fluoroeslastomer,aiming to facilitate the conversion of chainend carboxyl groups into hydroxyl groups and improvement in end-group reactivity.To achieve this,lanthanum chloride(LaCl_(3)),cerium chloride(CeCl_(3)),and neodymium chloride(NdCl_(3))were used separately to form catalytic reduction systems with NaBH_(4).The effects of solvent dosage,reaction temperature,reaction time length,and reductant dosage on carboxylic conversion were investigated,and the molecular chain structure,molecular weight,and functional group content of the raw materials and the products were analyzed and characterized by means of infrared spectroscopy(FTIR),proton nuclear magnetic resonance(^(1)H-NMR),fluorine-19 nuclear magnetic resonance(^(19)F-NMR),gel permeation chromatography(GPC),and chemical titration.Moreover,the catalytic activity and selectivity of the rare-earth chlorides,as well as the corresponding underlying interactions were discussed.Results indicated that the rare-earth-containing catalytic reduction systems studied in this work could efficiently convert the chain-end carboxyl groups into highly active hydroxyl groups,with a highest conversion up to 87.0%and differing catalytic reduction activities ranked as NaBH_(4)/CeCl_(3)>NaBH_(4)/LaCl_(3)>NaBH_(4)/NdCl_(3).Compared with the conventional lithium aluminum hydride(LiAIH_(4))reduction system,the NaBH_(4)/RECl_(3)systems provide multiple advantages such as mild reaction conditions,high conversion ratio with good selectivity,and environmental innocuity,and are potentially applicable as new reduction-catalysis combinations for the synthesis and functionalization of polymer materials. 展开更多
关键词 rare-earth chloride chain-end hydroxyl group telechelic low-molecular-weight fluoropolymers sodium borohydride
下载PDF
Novel Green resource material:Eucommia Ulmoides Gum 被引量:2
2
作者 Donghan Li Chen Yang +5 位作者 Yiqi Huang Long Li Wenchi Han Hailan Kang Feng Yang Qinghong Fang 《Resources Chemicals and Materials》 2022年第1期114-128,共15页
Eucommia ulmoides gum(EUG),main composition is trans-1,4-polyisoprene,is a natural polymer extracted from Eucommia ulmoides plant tissue.Benefiting from the crystallization ability and rubber-plastic duality,it can be... Eucommia ulmoides gum(EUG),main composition is trans-1,4-polyisoprene,is a natural polymer extracted from Eucommia ulmoides plant tissue.Benefiting from the crystallization ability and rubber-plastic duality,it can be applied to a variety of fields,including aerospace,national defense,healthcare,transportation,sports,and con-struction.Herein,we summarized recent progress in EUG research concerning efficient extraction methods,crys-tallization characteristics and novel functional EUG materials focused on the relationship between its molecular structure,crystallization behavior,phase structure,and properties.Furthermore,the research and development directions of EUG for the development of its new materials have been outlined. 展开更多
关键词 Eucommia ulmoides gum EXTRACTION CRYSTALLIZATION MODIFICATION Functional material
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部