Decommissioning of offshore facilities involve changing risk profiles at different decommissioning phases.Bayesian Belief Networks(BBN)are used as part of the proposed risk assessment method to capture the multiple in...Decommissioning of offshore facilities involve changing risk profiles at different decommissioning phases.Bayesian Belief Networks(BBN)are used as part of the proposed risk assessment method to capture the multiple interactions of a decommissioning activity.The BBN is structured from the data learning of an accident database and a modification of the BBN nodes to incorporate human reliability and barrier performance modelling.The analysis covers one case study of one area of decommissioning operations by extrapolating well workover data to well plugging and abandonment.Initial analysis from well workover data,of a 5-node BBN provided insights on two different levels of severity of an accident,the’Accident’and’Incident’level,and on its respective profiles of the initiating events and the investigation-reported human causes.The initial results demonstrate that the data learnt from the database can be used to structure the BBN,give insights on how human reliability pertaining to well activities can be modelled,and that the relative frequencies from the count analysis can act as initial data input for the proposed nodes.It is also proposed that the integrated treatment of various sources of information(database and expert judgement)through a BBN model can support the risk assessment of a dynamic situation such as offshore decommissioning.展开更多
基金The authors would like to acknowledge the support of Lloyd’s Register Singapore,Lloyd’s Register Consulting Energy AB(Sweden),Nanyang Technological University,Singapore Institute of Technology and the Singapore Economic Development Board(EDB)under the Industrial Postgraduate Program in the undertaking of this work(RCA-15/424).
文摘Decommissioning of offshore facilities involve changing risk profiles at different decommissioning phases.Bayesian Belief Networks(BBN)are used as part of the proposed risk assessment method to capture the multiple interactions of a decommissioning activity.The BBN is structured from the data learning of an accident database and a modification of the BBN nodes to incorporate human reliability and barrier performance modelling.The analysis covers one case study of one area of decommissioning operations by extrapolating well workover data to well plugging and abandonment.Initial analysis from well workover data,of a 5-node BBN provided insights on two different levels of severity of an accident,the’Accident’and’Incident’level,and on its respective profiles of the initiating events and the investigation-reported human causes.The initial results demonstrate that the data learnt from the database can be used to structure the BBN,give insights on how human reliability pertaining to well activities can be modelled,and that the relative frequencies from the count analysis can act as initial data input for the proposed nodes.It is also proposed that the integrated treatment of various sources of information(database and expert judgement)through a BBN model can support the risk assessment of a dynamic situation such as offshore decommissioning.