Based on paleogeomorphology, drilling and seismic data, this paper systematically studies the structural and sedimentary evolution, source rock characteristics, reservoir characteristics and formation mechanism, hydro...Based on paleogeomorphology, drilling and seismic data, this paper systematically studies the structural and sedimentary evolution, source rock characteristics, reservoir characteristics and formation mechanism, hydrocarbon accumulation model and enrichment law in the Linhe Depression of the Hetao Basin, NW China. The Hetao Basin mainly experienced three stages of evolution, namely, weak extensional fault depression, strong extensional fault depression and strike-slip transformation, giving rise to four positive structural belts(Jilantai, Shabu, Nalinhu and Xinglong), which are favorable areas for oil and gas accumulation. The two main saline lacustrine source rocks, Lower Cretaceous Guyang Formation and Oligocene Linhe Formation, are characterized by high sulfur content, rich algae, early maturity, early expulsion, and wide oil generation window. The large structural transition belt in the intermountain area around the Hetao Basin controls the formation of large-scale braided river delta deposits, which are characterized by high quartz content(50%-76%), long-term shallow burial and weak compaction, low cement content, and good reservoir properties in delta front sandbody. The burial depth of the effective Paleogene reservoirs is predicted to reach 8000 m. Three hydrocarbon accumulation models, nose-uplift near sag, buried hill surrounding sag, fault nose near source rock, are constructed. The law of hydrocarbon accumulation in the Linhe Depression is finally clarified as follows: near-source around the depression is the foundation, high-quality thick reservoir is the premise, good tectonic setting and trap conditions are the key.展开更多
To prevent hydrogen-induced loss and achieve long-term effective parameters monitoring in harsh downhole environment,we proposed a Fabry-Perot sensor with vacuum sputter deposited carbon coating film,in which we emplo...To prevent hydrogen-induced loss and achieve long-term effective parameters monitoring in harsh downhole environment,we proposed a Fabry-Perot sensor with vacuum sputter deposited carbon coating film,in which we employed a deposition technology with a higher particle kinetic energy,closer substrate adhesion,and denser films,to deposit the coating film on the surface of the quartz capillary glass tube to protect the sensor from corrosion.The sensitivity and accuracy of the Fabry-Perot sensor with carbon film deposition can reach 369 nm/MPa and 0.02%FS,respectively.Meanwhile,the sensor has less hysteresis error and good pressure linearity of more than 0.99999 for repeatable pressure measurement.The downhole practice monitoring data indicated that this fiber-optic sensor exhibited excellent performance and the sputter deposited carbon coating can effectively decrease hydrogen loss.展开更多
基金Supported by the PetroChina Key Science and Technology (2021DJ0703)。
文摘Based on paleogeomorphology, drilling and seismic data, this paper systematically studies the structural and sedimentary evolution, source rock characteristics, reservoir characteristics and formation mechanism, hydrocarbon accumulation model and enrichment law in the Linhe Depression of the Hetao Basin, NW China. The Hetao Basin mainly experienced three stages of evolution, namely, weak extensional fault depression, strong extensional fault depression and strike-slip transformation, giving rise to four positive structural belts(Jilantai, Shabu, Nalinhu and Xinglong), which are favorable areas for oil and gas accumulation. The two main saline lacustrine source rocks, Lower Cretaceous Guyang Formation and Oligocene Linhe Formation, are characterized by high sulfur content, rich algae, early maturity, early expulsion, and wide oil generation window. The large structural transition belt in the intermountain area around the Hetao Basin controls the formation of large-scale braided river delta deposits, which are characterized by high quartz content(50%-76%), long-term shallow burial and weak compaction, low cement content, and good reservoir properties in delta front sandbody. The burial depth of the effective Paleogene reservoirs is predicted to reach 8000 m. Three hydrocarbon accumulation models, nose-uplift near sag, buried hill surrounding sag, fault nose near source rock, are constructed. The law of hydrocarbon accumulation in the Linhe Depression is finally clarified as follows: near-source around the depression is the foundation, high-quality thick reservoir is the premise, good tectonic setting and trap conditions are the key.
基金by the National Natural Science Foundation of China(No.61605101)the Natural Fund of Shandong Province(Nos.ZR2021MF127 and ZR2020LLZ010)the Peixin Fund of Qilu University of Technology(No.2022PX074)。
文摘To prevent hydrogen-induced loss and achieve long-term effective parameters monitoring in harsh downhole environment,we proposed a Fabry-Perot sensor with vacuum sputter deposited carbon coating film,in which we employed a deposition technology with a higher particle kinetic energy,closer substrate adhesion,and denser films,to deposit the coating film on the surface of the quartz capillary glass tube to protect the sensor from corrosion.The sensitivity and accuracy of the Fabry-Perot sensor with carbon film deposition can reach 369 nm/MPa and 0.02%FS,respectively.Meanwhile,the sensor has less hysteresis error and good pressure linearity of more than 0.99999 for repeatable pressure measurement.The downhole practice monitoring data indicated that this fiber-optic sensor exhibited excellent performance and the sputter deposited carbon coating can effectively decrease hydrogen loss.