期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Chromatin-associated SUMOylation controls the transcriptional switch between plant development and heat stress responses 被引量:1
1
作者 Danlu Han Chen Chen +6 位作者 Simin Xia Jun Liu Jie Shu Vi Nguyen Jianbin Lai Yuhai Cui Chengwei Yang 《Plant Communications》 2021年第1期85-95,共11页
The post-translational protein modification known as SUMOylation has conserved roles in the heat stress responses of various species.The functional connection between the global regulation of gene expression and chrom... The post-translational protein modification known as SUMOylation has conserved roles in the heat stress responses of various species.The functional connection between the global regulation of gene expression and chromatin-associatedSUMOylation in plant cells isunknown.Here,weuncovereda genome-wide relationship between chromatin-associated SUMOylation and transcriptional switches in Arabidopsis thaliana grown at room temperature,exposed to heat stress,and exposed to heat stress followed by recovery.The small ubiquitin-like modifier(SUMO)-associated chromatin sites,characterized by whole-genome ChIP-seq,were generally associated with active chromatin markers.In response to heat stress,chromatin-associated SUMO signals increased at promoter-transcriptional start site regions and decreased in gene bodies.RNAseq analysis supported the role of chromatin-associatedSUMOylation in transcriptional activation during rapid responses to high temperature.Changes inSUMOsignals on chromatinwere associated with the upregulation of heat-responsivegenesandthedownregulation ofgrowth-relatedgenes.Disruption of theSUMOligasegene SIZ1 abolished SUMOsignals on chromatin and attenuated rapid transcriptional responses to heat stress.The SUMO signal peaks were enriched in DNA elements recognized by distinct groups of transcription factors under different temperature conditions.These observations provide evidence that chromatin-associated SUMOylation regulates the transcriptional switch between development and heat stress response in plant cells. 展开更多
关键词 CHROMATIN development heat stress plant cells SUMOYLATION TRANSCRIPTION
原文传递
Evaluation of Drought Stress-Inducible W<i>si</i>18 Promoter in <i>Brachypodium distachyon</i>
2
作者 Patrick Langille Wei Wei +2 位作者 Jim Karagiannis Tim Xing Lining Tian 《Advances in Bioscience and Biotechnology》 2018年第11期596-612,共17页
The rice Wsi18 promoter confers drought-inducible gene expression. This property makes it a useful candidate to drive relevant genes for developing drought resistant traits for different monocot crops. In this study, ... The rice Wsi18 promoter confers drought-inducible gene expression. This property makes it a useful candidate to drive relevant genes for developing drought resistant traits for different monocot crops. In this study, we showed that the Bradi2G47700 gene, the closest homologue to rice Wsi18, was upregulated in Brachypodium distachyon plants exposed to ABA and mannitol. Wsi18: uidA transgenic B. distachyon plants were produced and then subjected to ABA or mannitol treatment. The expression of uidA in three transgenic lines (line 10, 18 and 37) was significantly upregulated in plants exposed to ABA (fold increases of 5.61 ± 0.98, 2.88 ± 0.75 and 9.13 ± 1.96, respectively) compared to the same transgenic plant lines without treatment. The expression of uidA in two transgenic lines (lines 18 and 37) also showed upregulation when treated with mannitol (fold increases of 4.43 ± 1.07 and 8.47 ± 2.90, respectively) compared to the same transgenic plant lines without mannitol treatment. Moreover, GUS histochemical assay showed increased Wsi18 promoter activity in the leaves and stems of transgenic lines upon treatment with ABA or mannitol. This is the first report of the drought inducible rice Wsi18 promoter being active in B. distachyon which is a model plant for molecular biology research of various monocot plants. Taken together, the results indicate that the Wsi18 promoter and its homologue may be explored as a useful tool for drought stress-inducible gene expression in different monocot crops. 展开更多
关键词 Wsi18 PROMOTER Drought INDUCIBLE BRACHYPODIUM distachyon ABA MANNITOL
下载PDF
Effects of Transparent Testa8(TT8) gene and Homeobox12(HB12) gene silencing in alfalfa(Medicago sativa L.) on molecular structure spectral profile in relation to energy,degradation,and fermentation characteristics in ruminant systems
3
作者 Yaogeng Lei Abdelali Hannoufa Peiqiang Yu 《Animal Nutrition》 SCIE CAS CSCD 2023年第3期79-87,共9页
Alfalfa(Medicago sativa L.) is a legume forage that is widely cultivated owing to its high biomass yield and favorable nutrient values. However, alfalfa contains relatively high lignin, which limits its utilization.Do... Alfalfa(Medicago sativa L.) is a legume forage that is widely cultivated owing to its high biomass yield and favorable nutrient values. However, alfalfa contains relatively high lignin, which limits its utilization.Downregulation of two transcriptional factors, Transparent Testa8(TT8) and Homeobox12(HB12), has been proposed to reduce lignin content in alfalfa. Therefore, silencing of TT8(TT8i) and HB12(HB12i) in alfalfa was achieved by RNAi technology. The objective of this project was to determine effect of gene modification through silencing of TT8 and HB12 genes in alfalfa plants on lignin and phenolic content,bioenergic value, nutrient supply from rumen degradable and undegradable fractions, and in vitro ammonia production in response to the silencing of TT8 and HB12 genes in alfalfa. All gene silenced alfalfa plants(5 TT8i and 11 HB12i) were grown under greenhouse conditions with wild type as a control.Samples were analyzed for bioactive compounds, degradation fractions, truly digestible nutrients, energetic values and in vitro ammonia productions in ruminant systems. Furthermore, relationships between physiochemical, metabolic and fermentation characteristics and molecular spectral parameters were determined using vibrational molecular spectroscopy. Results showed that the HB12i had higher lignin, while TT8i had higher phenolics. Both silenced genotypes had higher rumen slowly degraded carbohydrate fractions and truly digestible neutral detergent fiber, but lower rumen degradable protein fractions. Moreover, the HB12i had lower truly digestible crude protein, energetic values and ammonia production compared with other silenced genotypes. In addition, in relation to the nutritive values of alfalfa, structural carbohydrate parameters were negatively correlated, whereas alpha/beta ratio in protein structure was positively correlated. Furthermore, good predictions were obtained for degradation of protein and carbohydrate fractions and energy values from molecular spectral parameters. In conclusion, silencing of the TT8 and HB12 genes decreased protein availability and increased fiber availability. Silencing of the HB12 gene also increased lignin and decreased energy and rumen ammonia production. Moreover, nutritional alterations were closely correlated with molecular spectral parameters. Therefore, gene modification through silencing the TT8 and HB12 genes in alfalfa influenced physiochemical, metabolic and fermentation characteristics. 展开更多
关键词 Gene silencing Homeobox12(HB12)gene Transparent Testa8(TT8)gene Alfalfa(Medicago sativa L.) Ruminant system Fermentation and degradation
原文传递
SUMOylation-modified Pelota-Hbs1 RNA surveillance complex restricts the infection of potyvirids in plants 被引量:3
4
作者 Linhao Ge Buwei Cao +9 位作者 Rui Qiao Hongguang Cui Shaofang Li Hongying Shan Pan Gong Mingzhen Zhang Hao Li Aiming Wang Xueping Zhou Fangfang Li 《Molecular Plant》 SCIE CSCD 2023年第3期632-642,共11页
RNA quality control nonsense-mediated decay is involved in viral restriction in both plants and animals.However,it is not known whether two other RNA quality control pathways,nonstop decay and no-go decay,are capable ... RNA quality control nonsense-mediated decay is involved in viral restriction in both plants and animals.However,it is not known whether two other RNA quality control pathways,nonstop decay and no-go decay,are capable of restricting viruses in plants.Here,we show that the evolutionarily conserved Pelota–Hbs1 complex negatively regulates infection of plant viruses in the family Potyviridae(termed potyvirids),the largest group of plant RNA viruses that accounts for more than half of the viral crop damage worldwide.Pelota enables the recognition of the functional G1-2A6-7 motif in the P3 cistron,which is conserved in almost all potyvirids.This allows Pelota to target the virus and act as a viral restriction factor.Furthermore,Pelota interacts with the SUMO E2-conjugating enzyme SCE1 and is SUMOylated in planta.Blocking Pelota SUMOylation disrupts the ability to recruit Hbs1 and inhibits viral RNA degradation.These findings reveal the functional importance of Pelota SUMOylation during the infection of potyvirids in plants. 展开更多
关键词 SUMOYLATION Pelota-Hbs1 G1-2A6-7 motif POTYVIRUSES
原文传递
Autophagy mediates a direct synergistic interaction during cotransmission of two distinct arboviruses by insect vectors
5
作者 Dongsheng Jia Qifu Liang +6 位作者 Hongyan Chen Huan Liu Guangjun Li Xiaofeng Zhang Qian Chen Aiming Wang Taiyun Wei 《Science China(Life Sciences)》 SCIE CAS CSCD 2023年第7期1665-1681,共17页
Multiple viral infections in insect vectors with synergistic effects are common in nature,but the underlying mechanism remains elusive.Here,we find that rice gall dwarf reovirus(RGDV)facilitates the transmission of ri... Multiple viral infections in insect vectors with synergistic effects are common in nature,but the underlying mechanism remains elusive.Here,we find that rice gall dwarf reovirus(RGDV)facilitates the transmission of rice stripe mosaic rhabdovirus(RSMV)by co-infected leafhopper vectors.RSMV nucleoprotein(N)alone activates complete anti-viral autophagy,while RGDV nonstructural protein Pns11 alone induces pro-viral incomplete autophagy.In co-infected vectors,RSMVexploits Pns11-induced autophagosomes to assemble enveloped virions via N-Pns11-ATG5 interaction.Furthermore,RSMV could effectively propagate in Sf9 cells.Expression of Pns11 in Sf9 cells or leafhopper vectors causes the recruitment of N from the ER to Pns11-induced autophagosomes and inhibits N-induced complete autophagic flux,finally facilitating RSMV propagation.In summary,these results demonstrate a previously unappreciated role of autophagy in the regulation of the direct synergistic interaction during co-transmission of two distinct arboviruses by insect vectors and reveal the functional importance of virus-induced autophagosomes in rhabdovirus assembly. 展开更多
关键词 AUTOPHAGY synergistic interaction insect vector RHABDOVIRUS co-transmission
原文传递
Antibiotic Resistance Genes in the Human-Impacted Environment:A One Health Perspective 被引量:13
6
作者 James M. TIEDJE WANG Fang +5 位作者 Celia M. MANAIA Marko VIRTA SHENG Hongjie MA Liping ZHANG Tong Edward TOPP 《Pedosphere》 SCIE CAS CSCD 2019年第3期273-282,共10页
Antibiotic resistance and its environmental component are gaining more attention as part of combating the growing healthcare crisis. The One Health framework, promulgated by many global health agencies, recognizes tha... Antibiotic resistance and its environmental component are gaining more attention as part of combating the growing healthcare crisis. The One Health framework, promulgated by many global health agencies, recognizes that antimicrobial resistance is a truly inter-domain problem in which human health, animal agriculture, and the environment are the core and interrelated components.This prospectus presents the status and issues relevant to the environmental component of antibiotic resistance, namely, the needs for advancing surveillance methodology: the environmental reservoirs and sources of resistance, namely, urban wastewater treatment plants, aquaculture production systems, soil receiving manure and biosolid, and the atmosphere which includes longer range dispersal.Recently, much work has been done describing antibiotic resistance genes in various environments;now quantitative, mechanistic,and hypothesis-driven studies are needed to identify practices that reduce real risks and maintain the effectiveness of our current antibiotics as long as possible. Advanced deployable detection methods for antibiotic resistance in diverse environmental samples are needed in order to provide the surveillance information to identify risks and define barriers that can reduce risks. Also needed are practices that reduce antibiotic use and thereby reduce selection for resistance, as well as practices that limit the dispersal of or destroy antibiotic-resistant bacteria or their resistance genes that are feasible for these varied environmental domains. 展开更多
关键词 animal agriculture antibiotic-resistant bacteria antimicrobial resistance AQUACULTURE human health One Health framework soil contamination wastewater and sludge
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部