An understanding of dendrite growth is required in order to improve the properties of castings. For this reason, cellular automaton-finite difference(CA-FD) method was used to investigate the dendrite growth during di...An understanding of dendrite growth is required in order to improve the properties of castings. For this reason, cellular automaton-finite difference(CA-FD) method was used to investigate the dendrite growth during directional solidification(DS)process. The solute diffusion model combined with macro temperature field model was established for predicting the dendrite growth behavior. Model validation was performed by the DS experiment, and the cooling curves and grain structures obtained by the experiment presented a reasonable agreement with the simulation results. The competitive growth of dendrites was also simulated by the proposed model, and the competitive behavior of dendrites with different misalignment angles was also discussed in detail.Subsequently, 3D dendrites growth was also investigated by experiment and simulation, and both were in good accordance. The influence on dendrites growth of initial nucleus was investigated by three simulation cases, and the results showed that the initial nuclei just had an effect on the initial growth stage of columnar dendrites, but had little influence on the final dendritic morphology and the primary dendrite arm spacing.展开更多
基金Project(2017ZX04014001) supported by the National Science and Technology Major Project of ChinaProject(2017YFB0701503) supported by the National Key R&D Program of ChinaProject(51374137) supported by the National Natural Science Foundation of China
文摘An understanding of dendrite growth is required in order to improve the properties of castings. For this reason, cellular automaton-finite difference(CA-FD) method was used to investigate the dendrite growth during directional solidification(DS)process. The solute diffusion model combined with macro temperature field model was established for predicting the dendrite growth behavior. Model validation was performed by the DS experiment, and the cooling curves and grain structures obtained by the experiment presented a reasonable agreement with the simulation results. The competitive growth of dendrites was also simulated by the proposed model, and the competitive behavior of dendrites with different misalignment angles was also discussed in detail.Subsequently, 3D dendrites growth was also investigated by experiment and simulation, and both were in good accordance. The influence on dendrites growth of initial nucleus was investigated by three simulation cases, and the results showed that the initial nuclei just had an effect on the initial growth stage of columnar dendrites, but had little influence on the final dendritic morphology and the primary dendrite arm spacing.