SimaPro is a software package designed to make a valuable contribution for analyzing the environmental impact on products during their whole life cycle. A huge amount of knowledge about the environment is built into t...SimaPro is a software package designed to make a valuable contribution for analyzing the environmental impact on products during their whole life cycle. A huge amount of knowledge about the environment is built into the program and database, enabling to analyze a product with a minimum of specialized knowledge. In this study, SimaPro was used to analyze and evaluate the impacts that resulted from sewerage network in Al-Hilla city, Iraq. The results of Life Cycle Assessment (LCA) showed that sewerage network had an impact and damage on the environment by 291 points for every cubic meter of collect wastewater. The most potential environmental impacts were global warming, respiratory inorganics and non-renewable energy, contributing to the sewerage network. The study also showed that most of the effects were as a result of energy consumption in the pumping of wastewater, pipes used and diesel using for network operation.展开更多
Reservoirs are usually exposed to sediment accumulation problems that will lead to reduction in their storage capacity. This problem directly affects the performance of the dams and causes shortage of their useful lif...Reservoirs are usually exposed to sediment accumulation problems that will lead to reduction in their storage capacity. This problem directly affects the performance of the dams and causes shortage of their useful life. The simplest technique to estimate sediment deposition rate is using sediment rating curve with sediment trapping efficiency (TE) of the reservoir. Many empirical and semi-empirical approaches have been suggested for to determine this term depending on the annual inflow rate, reservoir characteristics and features of the catchments area. In this study six different empirical methods depending on the residence time principle (water retention time) were used. These approaches were reviewed and applied to determine TE of Mosul dam reservoir (MDR) for period 1986 to 2011. The monthly operating data for inflow, outflow and water elevations for MDR were used to determine monthly TE and long-term TE for whole period of MDR using the mentioned methods. Furthermore, the monthly inflow rate for River Tigris upstream MDR, its sediment rating curve and sediment feeding from valleys around MDR were used to estimate the amount sediment coming to the reservoir. The results provided by these methods for TE with sediment coming to MDR were used to compute the amount of sediment deposited in MDR on monthly bases during this period. The results obtained were evaluated using observed bathymetric survey data that had been collected in 2011 after 25 years of the operation of the dam. The results showed all the mentioned methods gave convergent results and they were very close to bathymetric survey results for estimating the volume of sediment deposited especially that proposed by Ward which gave 0.368% percentage error. Furthermore, the result computed using monthly TE gave good agreement if compared with that long-term TE where the percentage error was ranging between –3.229% to 1.674% for monthly adopted data and –4.862% to?–2.477% for whole period data. It is believed that this work will help others to use this procedure on other reservoirs.展开更多
The supply of fresh water is essential to life, socioeconomic development, and political stability in Middle East. Turkey, Syria and Iraq are the main riparian countries in the Tigris-Euphrates basin. Turkey is the ri...The supply of fresh water is essential to life, socioeconomic development, and political stability in Middle East. Turkey, Syria and Iraq are the main riparian countries in the Tigris-Euphrates basin. Turkey is the riparian hegemon for a long time due to its structural power and dominant river position. Iraq and Syria are the lower countries in the basin and for this reason they always like to ensure the quantity of water required to satisfy their requirements. The conflict between riparian countries is due to several factors. These are: population growth rate and food security, energy security, economic and technological development, political fragmentation, international water laws, water and management availability and public awareness. There have been a number of attempts to find a common ground on water issues between the main three riparian countries since 1920 but no agreement signed yet. Present situation is very bad in Syria and Iraq where thousands of people have no access to water and farmers are leaving their land because of draught. Such situation will definitely raise tension and might lead to war. To avoid this, a mediator that has the capability to bring all countries concerned to the negotiation table is required. In addition, Syria and Iraq are to adopt prudent strategic plan based on resources development theory to ensure good water management and minimum water loses.展开更多
Kicks are the result of under balance drilling operation. Time consumed to control the kicks will be different in depending on the controlling technique. Drilling fluid considered as a first barrier to control formati...Kicks are the result of under balance drilling operation. Time consumed to control the kicks will be different in depending on the controlling technique. Drilling fluid considered as a first barrier to control formation pressure and well kicks. Any advance in drilling fluids leads to more controlled operation in term of time. This paper will follow the general increasing profile of pressure before entering the reservoir. Both methods of well controlling technique;circulating techniques and non-circulating have been implemented in many oil blocks. The process of designing and casing selection, setting depth and many other issues is predominately dependent on the utilization of accurate values of formation pressure. Formation pressures used to design safe mud weights to overcome fracturing the formation and prevent well kicks. Hence the emphasis has been placed on the practical utilization of kicks pressure near the reservoir. The presented relationships will help the engineer to better understand lithological columns and reduce potential hole problems during the kick appearance. Selecting the best well controlling practical method can lead to not harming the reservoir and more production later. Changes in some drilling fluid properties have been proposed with increasing the depth without damaging the reservoir. Suggestions in relation to the casing setting point of the intermediate section are also proposed. Standard equations with proper modification for gases and safety margin have been proposed for the future drilling operation in oil fields above the reservoir.展开更多
In this paper, we study the non-definite Sturm-Liouville problem comprising of a regular Sturm-Liouville equation and Dirichlet boundary conditions on a closed interval. We consider the case in which the weight functi...In this paper, we study the non-definite Sturm-Liouville problem comprising of a regular Sturm-Liouville equation and Dirichlet boundary conditions on a closed interval. We consider the case in which the weight function changes sign twice in the given interval of definition. We give detailed numerical results on the spectrum of the problem, from which we verify various results on general non definite Sturm-Liouville problems. We also present some theoretical results which support the numerical results. Some numerical results seem to be in contrast with the results that are so far obtained in the case where the weight function changes sign once. This leads to more open questions for future studies in this particular area.展开更多
This study describes the performance of concrete in fresh state, intended for sealing deep bore-holes in the host rock of radioactive repositories. Set of different paste volumes, combinations of water-to-powder ratio...This study describes the performance of concrete in fresh state, intended for sealing deep bore-holes in the host rock of radioactive repositories. Set of different paste volumes, combinations of water-to-powder ratios and fine aggregate contents have been performed within the frame of this study. The main objective was to search for tendencies, logical connections and phenomena that occur for different combination of materials regarding the fluidity and segregation and mainly the effect from the (paste) or fine aggregate content. It shall be pointed out that this investigation is a suggestion on how concrete can be optimized using two simple test methods based on changing the paste content. The results highlighted the importance of having sufficient amounts of filler and cement paste for separate and carry larger particles, which gives the concrete good workability and fluidity at casting. It was concluded that the slump behaviors can be optimized based on the adjustments of the superplastisizer dosage.展开更多
Novel plastics that are biodegradable, environmentally benign, and made from renewable natural resources are currently being researched as alternatives to traditional petroleum-based plastics. One such plastic, thermo...Novel plastics that are biodegradable, environmentally benign, and made from renewable natural resources are currently being researched as alternatives to traditional petroleum-based plastics. One such plastic, thermoplastic starch (TPS) is produced from starch processed at high temperatures in the presence of plasticizers, such as water and glycerol. However, because of its hydrophilic nature, TPS exhibits poor mechanical properties when exposed to environmental conditions, such as rain or humidity. The overall objective of this research work was to produce a thermoplastic starch based material with low water absorption that may be used to replace petroleum-based plastics. With a recent emergence of “green” polyethylene (GPE), sourced from renewable feedstock, it has become possible to develop novel biodegradable polymers for various applications. In this work, GPE was melt blended with starch in three different ways;reactive extrusion of GPE and starch facilitated by maleic anhydride (MAH) and dicumyl peroxide (DCP), melt blending of GPE and starch by extrusion, and melt blending of maleated polyethylene and starch by extrusion. Comprehensive testing and analysis has shown that all methods reduced water absorption significantly with some variations across the board.展开更多
A hydraulic jump is a rapid transition from supercritical flow to subcritical flow characterized by the development of large scale turbulence, surface waves, spray, energy dissipation and considerable air entrainment....A hydraulic jump is a rapid transition from supercritical flow to subcritical flow characterized by the development of large scale turbulence, surface waves, spray, energy dissipation and considerable air entrainment. Hydraulic jumps can be found in waterways such as spillways connected to hydropower plants and are an effective way to eliminate problems caused by high velocity flow, e.g. erosion. Due to the importance of the hydropower sector as a major contributor to the Swedish electricity production, the present study focuses on Smoothed Particle Hydrodynamic (SPH) modelling of 2D hydraulic jumps in horizontal open channels. Four cases with different spatial resolution of the SPH particles were investigated by comparing the conjugate depth in the subcritical section with theoretical results. These showed generally good agreement with theory. The coarsest case was run for a longer time and a quasi-stationary state was achieved, which facilitated an extended study of additional variables. The mean vertical velocity distribution in the horizontal direction compared favorably with experiments and the maximum velocity for the SPH-simulations indicated a too rapid decrease in the horizontal direction and poor agreement to experiments was obtained. Furthermore, the mean and the standard deviation of the free surface fluctuation showed generally good agreement with experimental results even though some discrepancies were found regarding the peak in the maximum standard deviation. The free surface fluctuation frequencies were over predicted and the model could not capture the decay of the fluctuations in the horizontal direction.展开更多
Estimation of runoff volume and sediment load is the main problem that affects the performance of dams due to the reduction in the storage capacity of their reservoirs and their effect on dam efficiency and operation ...Estimation of runoff volume and sediment load is the main problem that affects the performance of dams due to the reduction in the storage capacity of their reservoirs and their effect on dam efficiency and operation schedule. The simulation models can be considered for this purpose if the continuous field measurements are not available. Soil and Water Assessment Tool (SWAT) and Water Erosion Prediction Project (WEPP) models were applied to estimate the annual runoff volume and sediment load for Duhok Dam Reservoir in north of Duhok/Iraq for the period 1988-2011. The estimated annual runoff volume varied from 2.3 to 34.7 MCM for considered period. Those values were affected by rainfall depth, intensity and runoff coefficient. The resultant annual runoff coefficient for the studied area ranged from 0.05 to 0.35 (average was 0.18) causing an average runoff volume of about 14 MCM. The results of sediment routing indicated that the values of sediment yields varied from 50 to 1400 t/km2/year depending on sub basin properties. The average annual sediment load from the whole watershed is about 120 × 10<sup>3</sup> ton. The estimated total sediment arrived to Duhok Reservoir for the considered period 1988-2011 was about 2.9 × 10<sup>6</sup> ton. The results indicate that both models gave reasonable results in comparison with measured values. Based on statistical criteria, the results of both models are close to gather.展开更多
The polluters of total suspended particles (TSP) and some heavy metals (Cd, Co, and Ni) concentrations were studied in the areas of Al-Fatha, Al-Alam and Baiji, Iraq. These concentrations were measured for selected 22...The polluters of total suspended particles (TSP) and some heavy metals (Cd, Co, and Ni) concentrations were studied in the areas of Al-Fatha, Al-Alam and Baiji, Iraq. These concentrations were measured for selected 22 sample locations for two periods, January and July 2013. The analyzed values of (TSP) and (Cd) exceeded the limits of Iraqi National and the World Health Organization (WHO) for the two periods. Also, (Ni) values exceeded the limits for July only, while (Co) values were under the limits for the two periods. The difference between the two periods reflects the effect of the wind speed and direction, rainfall, and the intensity of the dust storms during the two months, respectively. GIS technique makes optimal predictions possible by examining the relationships between all the sample points and producing a continuous surface of polluter’s concentration. Therefore, GIS was used to produce predictions and probabilities maps for the critical polluter values in the study area.展开更多
The Dukan Dam Reservoir (DDR) in the Kurdistan Region of Iraq has been studied to determine the characteristics and nature of the reservoir and the deposited sediments on its bottom surface. This study was achieved by...The Dukan Dam Reservoir (DDR) in the Kurdistan Region of Iraq has been studied to determine the characteristics and nature of the reservoir and the deposited sediments on its bottom surface. This study was achieved by doing a field survey and grain size analyses of the collected sediment samples at 32 locations representing the whole reservoir area that had been created when the Lesser Zab River was dammed in 1959. The Dukan Dam, which is a multi-purpose concrete arch dam, was built on the Lesser Zab River for controlling its flood during high rainfall seasons, irrigation and power generation. The catchment area is 11,690 km<sup>2</sup>. The surface area of the reservoir is 270 square kilometers and the volume is 6.870 × 106 m<sup>3</sup> at normal operation level (El. 511.00 m. a.s.l.). The minimum drawdown level is at elevation 469 m above sea level (a.s.l.). The live storage is 6.14 × 106 m<sup>3</sup> while the remainder is dead storage. The reservoir has a surface area that reaches 270 square kilometers and is composed of two sub-reservoirs connected by a narrow channel that has a length of 5 kilometers. The relatively bigger reservoir is located in the north and has a triangular shape with a surface area approximately 250 square kilometers. The smaller sub-reservoir is located down south where the dam exists and it has irregular rectangular shape. Thirty-two sediment samples were collected from the bottom of Dukan reservoir. The bed of the reservoir is mainly composed of 15% gravel, 14% sand, 48% silt and 23% clay respectively. Most of the sediments are very fine grained, very poorly sorted, strongly coarse skewed and mesokurtic.展开更多
文摘SimaPro is a software package designed to make a valuable contribution for analyzing the environmental impact on products during their whole life cycle. A huge amount of knowledge about the environment is built into the program and database, enabling to analyze a product with a minimum of specialized knowledge. In this study, SimaPro was used to analyze and evaluate the impacts that resulted from sewerage network in Al-Hilla city, Iraq. The results of Life Cycle Assessment (LCA) showed that sewerage network had an impact and damage on the environment by 291 points for every cubic meter of collect wastewater. The most potential environmental impacts were global warming, respiratory inorganics and non-renewable energy, contributing to the sewerage network. The study also showed that most of the effects were as a result of energy consumption in the pumping of wastewater, pipes used and diesel using for network operation.
文摘Reservoirs are usually exposed to sediment accumulation problems that will lead to reduction in their storage capacity. This problem directly affects the performance of the dams and causes shortage of their useful life. The simplest technique to estimate sediment deposition rate is using sediment rating curve with sediment trapping efficiency (TE) of the reservoir. Many empirical and semi-empirical approaches have been suggested for to determine this term depending on the annual inflow rate, reservoir characteristics and features of the catchments area. In this study six different empirical methods depending on the residence time principle (water retention time) were used. These approaches were reviewed and applied to determine TE of Mosul dam reservoir (MDR) for period 1986 to 2011. The monthly operating data for inflow, outflow and water elevations for MDR were used to determine monthly TE and long-term TE for whole period of MDR using the mentioned methods. Furthermore, the monthly inflow rate for River Tigris upstream MDR, its sediment rating curve and sediment feeding from valleys around MDR were used to estimate the amount sediment coming to the reservoir. The results provided by these methods for TE with sediment coming to MDR were used to compute the amount of sediment deposited in MDR on monthly bases during this period. The results obtained were evaluated using observed bathymetric survey data that had been collected in 2011 after 25 years of the operation of the dam. The results showed all the mentioned methods gave convergent results and they were very close to bathymetric survey results for estimating the volume of sediment deposited especially that proposed by Ward which gave 0.368% percentage error. Furthermore, the result computed using monthly TE gave good agreement if compared with that long-term TE where the percentage error was ranging between –3.229% to 1.674% for monthly adopted data and –4.862% to?–2.477% for whole period data. It is believed that this work will help others to use this procedure on other reservoirs.
文摘The supply of fresh water is essential to life, socioeconomic development, and political stability in Middle East. Turkey, Syria and Iraq are the main riparian countries in the Tigris-Euphrates basin. Turkey is the riparian hegemon for a long time due to its structural power and dominant river position. Iraq and Syria are the lower countries in the basin and for this reason they always like to ensure the quantity of water required to satisfy their requirements. The conflict between riparian countries is due to several factors. These are: population growth rate and food security, energy security, economic and technological development, political fragmentation, international water laws, water and management availability and public awareness. There have been a number of attempts to find a common ground on water issues between the main three riparian countries since 1920 but no agreement signed yet. Present situation is very bad in Syria and Iraq where thousands of people have no access to water and farmers are leaving their land because of draught. Such situation will definitely raise tension and might lead to war. To avoid this, a mediator that has the capability to bring all countries concerned to the negotiation table is required. In addition, Syria and Iraq are to adopt prudent strategic plan based on resources development theory to ensure good water management and minimum water loses.
文摘Kicks are the result of under balance drilling operation. Time consumed to control the kicks will be different in depending on the controlling technique. Drilling fluid considered as a first barrier to control formation pressure and well kicks. Any advance in drilling fluids leads to more controlled operation in term of time. This paper will follow the general increasing profile of pressure before entering the reservoir. Both methods of well controlling technique;circulating techniques and non-circulating have been implemented in many oil blocks. The process of designing and casing selection, setting depth and many other issues is predominately dependent on the utilization of accurate values of formation pressure. Formation pressures used to design safe mud weights to overcome fracturing the formation and prevent well kicks. Hence the emphasis has been placed on the practical utilization of kicks pressure near the reservoir. The presented relationships will help the engineer to better understand lithological columns and reduce potential hole problems during the kick appearance. Selecting the best well controlling practical method can lead to not harming the reservoir and more production later. Changes in some drilling fluid properties have been proposed with increasing the depth without damaging the reservoir. Suggestions in relation to the casing setting point of the intermediate section are also proposed. Standard equations with proper modification for gases and safety margin have been proposed for the future drilling operation in oil fields above the reservoir.
文摘In this paper, we study the non-definite Sturm-Liouville problem comprising of a regular Sturm-Liouville equation and Dirichlet boundary conditions on a closed interval. We consider the case in which the weight function changes sign twice in the given interval of definition. We give detailed numerical results on the spectrum of the problem, from which we verify various results on general non definite Sturm-Liouville problems. We also present some theoretical results which support the numerical results. Some numerical results seem to be in contrast with the results that are so far obtained in the case where the weight function changes sign once. This leads to more open questions for future studies in this particular area.
文摘This study describes the performance of concrete in fresh state, intended for sealing deep bore-holes in the host rock of radioactive repositories. Set of different paste volumes, combinations of water-to-powder ratios and fine aggregate contents have been performed within the frame of this study. The main objective was to search for tendencies, logical connections and phenomena that occur for different combination of materials regarding the fluidity and segregation and mainly the effect from the (paste) or fine aggregate content. It shall be pointed out that this investigation is a suggestion on how concrete can be optimized using two simple test methods based on changing the paste content. The results highlighted the importance of having sufficient amounts of filler and cement paste for separate and carry larger particles, which gives the concrete good workability and fluidity at casting. It was concluded that the slump behaviors can be optimized based on the adjustments of the superplastisizer dosage.
文摘Novel plastics that are biodegradable, environmentally benign, and made from renewable natural resources are currently being researched as alternatives to traditional petroleum-based plastics. One such plastic, thermoplastic starch (TPS) is produced from starch processed at high temperatures in the presence of plasticizers, such as water and glycerol. However, because of its hydrophilic nature, TPS exhibits poor mechanical properties when exposed to environmental conditions, such as rain or humidity. The overall objective of this research work was to produce a thermoplastic starch based material with low water absorption that may be used to replace petroleum-based plastics. With a recent emergence of “green” polyethylene (GPE), sourced from renewable feedstock, it has become possible to develop novel biodegradable polymers for various applications. In this work, GPE was melt blended with starch in three different ways;reactive extrusion of GPE and starch facilitated by maleic anhydride (MAH) and dicumyl peroxide (DCP), melt blending of GPE and starch by extrusion, and melt blending of maleated polyethylene and starch by extrusion. Comprehensive testing and analysis has shown that all methods reduced water absorption significantly with some variations across the board.
文摘A hydraulic jump is a rapid transition from supercritical flow to subcritical flow characterized by the development of large scale turbulence, surface waves, spray, energy dissipation and considerable air entrainment. Hydraulic jumps can be found in waterways such as spillways connected to hydropower plants and are an effective way to eliminate problems caused by high velocity flow, e.g. erosion. Due to the importance of the hydropower sector as a major contributor to the Swedish electricity production, the present study focuses on Smoothed Particle Hydrodynamic (SPH) modelling of 2D hydraulic jumps in horizontal open channels. Four cases with different spatial resolution of the SPH particles were investigated by comparing the conjugate depth in the subcritical section with theoretical results. These showed generally good agreement with theory. The coarsest case was run for a longer time and a quasi-stationary state was achieved, which facilitated an extended study of additional variables. The mean vertical velocity distribution in the horizontal direction compared favorably with experiments and the maximum velocity for the SPH-simulations indicated a too rapid decrease in the horizontal direction and poor agreement to experiments was obtained. Furthermore, the mean and the standard deviation of the free surface fluctuation showed generally good agreement with experimental results even though some discrepancies were found regarding the peak in the maximum standard deviation. The free surface fluctuation frequencies were over predicted and the model could not capture the decay of the fluctuations in the horizontal direction.
文摘Estimation of runoff volume and sediment load is the main problem that affects the performance of dams due to the reduction in the storage capacity of their reservoirs and their effect on dam efficiency and operation schedule. The simulation models can be considered for this purpose if the continuous field measurements are not available. Soil and Water Assessment Tool (SWAT) and Water Erosion Prediction Project (WEPP) models were applied to estimate the annual runoff volume and sediment load for Duhok Dam Reservoir in north of Duhok/Iraq for the period 1988-2011. The estimated annual runoff volume varied from 2.3 to 34.7 MCM for considered period. Those values were affected by rainfall depth, intensity and runoff coefficient. The resultant annual runoff coefficient for the studied area ranged from 0.05 to 0.35 (average was 0.18) causing an average runoff volume of about 14 MCM. The results of sediment routing indicated that the values of sediment yields varied from 50 to 1400 t/km2/year depending on sub basin properties. The average annual sediment load from the whole watershed is about 120 × 10<sup>3</sup> ton. The estimated total sediment arrived to Duhok Reservoir for the considered period 1988-2011 was about 2.9 × 10<sup>6</sup> ton. The results indicate that both models gave reasonable results in comparison with measured values. Based on statistical criteria, the results of both models are close to gather.
文摘The polluters of total suspended particles (TSP) and some heavy metals (Cd, Co, and Ni) concentrations were studied in the areas of Al-Fatha, Al-Alam and Baiji, Iraq. These concentrations were measured for selected 22 sample locations for two periods, January and July 2013. The analyzed values of (TSP) and (Cd) exceeded the limits of Iraqi National and the World Health Organization (WHO) for the two periods. Also, (Ni) values exceeded the limits for July only, while (Co) values were under the limits for the two periods. The difference between the two periods reflects the effect of the wind speed and direction, rainfall, and the intensity of the dust storms during the two months, respectively. GIS technique makes optimal predictions possible by examining the relationships between all the sample points and producing a continuous surface of polluter’s concentration. Therefore, GIS was used to produce predictions and probabilities maps for the critical polluter values in the study area.
文摘The Dukan Dam Reservoir (DDR) in the Kurdistan Region of Iraq has been studied to determine the characteristics and nature of the reservoir and the deposited sediments on its bottom surface. This study was achieved by doing a field survey and grain size analyses of the collected sediment samples at 32 locations representing the whole reservoir area that had been created when the Lesser Zab River was dammed in 1959. The Dukan Dam, which is a multi-purpose concrete arch dam, was built on the Lesser Zab River for controlling its flood during high rainfall seasons, irrigation and power generation. The catchment area is 11,690 km<sup>2</sup>. The surface area of the reservoir is 270 square kilometers and the volume is 6.870 × 106 m<sup>3</sup> at normal operation level (El. 511.00 m. a.s.l.). The minimum drawdown level is at elevation 469 m above sea level (a.s.l.). The live storage is 6.14 × 106 m<sup>3</sup> while the remainder is dead storage. The reservoir has a surface area that reaches 270 square kilometers and is composed of two sub-reservoirs connected by a narrow channel that has a length of 5 kilometers. The relatively bigger reservoir is located in the north and has a triangular shape with a surface area approximately 250 square kilometers. The smaller sub-reservoir is located down south where the dam exists and it has irregular rectangular shape. Thirty-two sediment samples were collected from the bottom of Dukan reservoir. The bed of the reservoir is mainly composed of 15% gravel, 14% sand, 48% silt and 23% clay respectively. Most of the sediments are very fine grained, very poorly sorted, strongly coarse skewed and mesokurtic.