期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A NOVEL STOCHASTIC HEPATITIS B VIRUS EPIDEMIC MODEL WITH SECOND-ORDER MULTIPLICATIVE α-STABLE NOISE AND REAL DATA
1
作者 Anwarud DIN Yassine SABBAR 吴鹏 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期752-788,共37页
This work presents an advanced and detailed analysis of the mechanisms of hepatitis B virus(HBV)propagation in an environment characterized by variability and stochas-ticity.Based on some biological features of the vi... This work presents an advanced and detailed analysis of the mechanisms of hepatitis B virus(HBV)propagation in an environment characterized by variability and stochas-ticity.Based on some biological features of the virus and the assumptions,the corresponding deterministic model is formulated,which takes into consideration the effect of vaccination.This deterministic model is extended to a stochastic framework by considering a new form of disturbance which makes it possible to simulate strong and significant fluctuations.The long-term behaviors of the virus are predicted by using stochastic differential equations with second-order multiplicative α-stable jumps.By developing the assumptions and employing the novel theoretical tools,the threshold parameter responsible for ergodicity(persistence)and extinction is provided.The theoretical results of the current study are validated by numerical simulations and parameters estimation is also performed.Moreover,we obtain the following new interesting findings:(a)in each class,the average time depends on the value ofα;(b)the second-order noise has an inverse effect on the spread of the virus;(c)the shapes of population densities at stationary level quickly changes at certain values of α.The last three conclusions can provide a solid research base for further investigation in the field of biological and ecological modeling. 展开更多
关键词 HBV model nonlinear perturbation probabilistic bifurcation long-run forecast numerical simulation
下载PDF
A simplified two-dimensional boundary element method with arbitrary uniform mean flow 被引量:2
2
作者 Bassem Barhoumi Safa Ben Hamouda Jamel Bessrour 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2017年第4期207-221,共15页
To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitr... To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitrary orientation. The boundary integral equation(BIE) representation solves the two-dimensional convected Helmholtz equation(CHE) and its fundamental solution, which must satisfy a new Sommerfeld radiation condition(SRC) in the physical space. In order to facilitate conventional formulations, the variables of the advanced form are expressed only in terms of the acoustic pressure as well as its normal and tangential derivatives, and their multiplication operators are based on the convected Green's kernel and its modified derivative. The proposed approach significantly reduces the CPU times of classical computational codes for modeling acoustic domains with arbitrary mean flow. It is validated by a comparison with the analytical solutions for the sound radiation problems of monopole,dipole and quadrupole sources in the presence of a subsonic uniform flow with arbitrary orientation. 展开更多
关键词 Two-dimensional convected Helmholtz equation Two-dimensional convected Green’s function Two-dimensional convected boundary element method Arbitrary uniform mean flow Two-dimensional acoustic sources
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部