In this investigation,a high-strength Mg-12Gd-1.0Er-0.5Zr(wt.%)alloy sheet was produced by hot extrusion(HE)and subsequent hard-plate rolling(HPR)at different temperatures.The results indicate that the microstructures...In this investigation,a high-strength Mg-12Gd-1.0Er-0.5Zr(wt.%)alloy sheet was produced by hot extrusion(HE)and subsequent hard-plate rolling(HPR)at different temperatures.The results indicate that the microstructures of these final-rolled sheets are inhomogeneous,mainly including coarse deformed grains and dynamic recrystallized(DRXed)grains,and the volume fraction of these coarse deformed grains increases as the rolling temperature increases.Thus,more DRXed grains can be found in R-385℃sheet,resulting in a smaller average grain size and weaker basal texture,while the biggest grains and the highest strong basal texture are present in R-450℃sheet.Amounts of dynamic precipitation ofβphases which are mainly determined by the rolling temperature are present in these sheets,and its precipitation can consume the content of Gd solutes in the matrix.As a result,the lowest number density ofβphase in R-450℃sheet is beneficial to modify the age hardening response.Thus,the R-450℃sheet displays the best age hardening response because of a severe traditional precipitation ofβ’(more)andβH/βM(less)precipitates,resulting in a sharp improvement in strength,i.e.ultimate tensile strength(UTS)of∼518±17 MPa and yield strength(YS)of∼438±18 MPa.However,the elongation(EL)of this sheet reduces greatly,and its value is∼2.7±0.3%.By contrasting,the EL of the peak-aging R-385℃sheet keeps better,changing from∼4.9±1.2%to∼4.8±1.4%due to a novel dislocation-induced chain-like precipitate which is helpful to keep good balance between strength and ductility.展开更多
Passive daytime radiative cooling(PDRC) is environment-friendly without energy input by enhancing the coating's solar reflectance(R_(solar)) and thermal emittance(ε_(LWIR)) in the atmosphere's long-wave infra...Passive daytime radiative cooling(PDRC) is environment-friendly without energy input by enhancing the coating's solar reflectance(R_(solar)) and thermal emittance(ε_(LWIR)) in the atmosphere's long-wave infrared transmission window.However,high R_(solar) is usually achieved by increasing the coating's thickness,which not only increases materials' cost but also impairs heat transfer.Additionally,the desired high R_(solar) is vulnerable to dust pollution in the outdoors.In this work,a thin paint was designed by mixing hBN plates,PFOTS,and IPA. R_(solar)=0.963 and ε_(LWIR)=0.927 was achieved at a thickness of 150 μm due to the high backscattering ability of scatters.A high through-plane thermal conductivity(~1.82 W m^(-1) K^(-1)) also can be obtained.In addition,the porous structure coupled with the binder PFOTS resulted in a contact angle of 154°,demonstrating excellent durability under dust contamination.Outdoor experiments showed that the thin paint can obtain a 2.3℃ lower temperature for sub-ambient cooling than the reference PDRC coating in the daytime.Furtherly,the above-ambient heat dissipation performance can be enhanced by spraying the thin paint on a 3D heat sink,which was 15.7℃ lower than the reference 1D structure,demonstrating excellent performance for durable and scalable PDRC applications.展开更多
The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scann...The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scanning techniques,and the 3D dynamic model of the rail-sleeper-ballast bed was constructed using the coupled discrete element method-multiflexible-body dynamics(DEM-MFBD)approach.We analyse the meso-mechanical dynamics of the ballast bed with USPs under dynamic load on a train and verify the correctness of the model in laboratory tests.It is shown that the deformation of the USPs increases the contact area between the sleeper and the ballast particles,and subsequently the number of contacts between them.As the depth of the granular ballast bed increases,the contact area becomes larger,and the contact force between the ballast particles gradually decreases.Under the action of the elastic USPs,the contact forces between ballast particles are reduced and the overall vibration level of the ballast bed can be reduced.The settlement of the granular ballast bed occurs mainly at the shallow position of the sleeper bottom,and the installation of the elastic USPs can be effective in reducing the stress on the ballast particles and the settlement of the ballast bed.展开更多
The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification proc...The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification process,which cannot provide sufficient protection.In the current study,we design a double-layer epoxy composite coating on Mg alloy with enhanced anti-corrosion/wear properties,via the spin-assisted assembly technique.The outer layer is functionalized graphene(FG)in waterborne epoxy resin(WEP)and the inner layer is Ce-based conversion(Ce)film.The FG sheets can be homogeneously dispersed within the epoxy matrix to fill the intrinsic defects and improve the barrier capability.The Ce film connects the outer layer with the substrate,showing the transition effect.The corrosion rate of Ce/WEP/FG composite coating is 2131 times lower than that of bare Mg alloy,and the wear rate is decreased by~90%.The improved corrosion resistance is attributed to the labyrinth effect(hindering the penetration of corrosive medium)and the obstruction of galvanic coupling behavior.The synergistic effect derived from the FG sheet and blocking layer exhibits great potential in realizing the improvement of multi-functional integration,which will open up a new avenue for the development of novel composite protection coatings of Mg alloys.展开更多
This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and...This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and defluidization.Adding kaolin could effectively inhibit the particle agglomeration during the fluidized pyrolysis reaction through physical isolation and chemical reaction.On the one hand,kaolin could form a coating layer on the surface of ceramic particles to prevent the adhesion of organic ash generated by the pyrolysis of resin.On the other hand,when a sufficient amount of kaolin(-0.2%(mass))was added,the activated kaolin could fully contact with the Na+ ions generated by the pyrolysis of resin and react to form a high-melting aluminosilicate mineral(nepheline),which could reduce the formation of low-melting-point sodium sulfate and thereby avoid the agglomeration of ceramic particles.展开更多
A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainab...A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainable corrosion inhibitors are chosen to investigate the corrosion inhibition behavior of ionic liquid(ILs)during the LePEO process for LA91 magnesium-lithium(Mg-Li)alloy.Results show that the ionic liquid BmimBF_(4)participates in the LePEO coating formation process,causing an increment in coating thickness and surface roughness.The low conductivity of the ionic liquid is responsible for the voltage and breakdown voltage increases during the LePEO with IL process(LePEO-IL).After adding BmimBF_(4),corrosion current density decreases from 1.159×10^(−4)A·cm^(−2)to 8.143×10^(−6)A·cm^(−2).The impedance modulus increases to 1.048×10^(4)Ω·cm^(−2)and neutral salt spray remains intact for 24 h.The superior corrosion resistance of the LePEO coating assisted by ionic liquid could be mainly attributed to its compact and thick barrier layer and physical absorption of ionic liquid.The ionic liquid-assisted LePEO technique provides a promising approach to reducing energy consumption and improving film performance.展开更多
Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infue...Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infuenced by the phase characteristics and microstructure.In this work,Nd-Fe-B magnets were manufactured using vacuum induction melting(VIM),laser directed energy deposition(LDED)and laser powder bed fusion(LPBF)technologies.Themicrostructure evolution and phase selection of Nd-Fe-B magnets were then clarified in detail.The results indicated that the solidification velocity(V)and cooling rate(R)are key factors in the phase selection.In terms of the VIM-casting Nd-Fe-B magnet,a large volume fraction of theα-Fe soft magnetic phase(39.7 vol.%)and Nd2Fe17Bxmetastable phase(34.7 vol.%)areformed due to the low R(2.3×10-1?C s-1),whereas only a minor fraction of the Nd2Fe14B hard magnetic phase(5.15 vol.%)is presented.For the LDED-processed Nd-Fe-B deposit,although the Nd2Fe14B hard magnetic phase also had a low value(3.4 vol.%)as the values of V(<10-2m s-1)and R(5.06×103?C s-1)increased,part of theα-Fe soft magnetic phase(31.7vol.%)is suppressed,and a higher volume of Nd2Fe17Bxmetastable phases(47.5 vol.%)areformed.As a result,both the VIM-casting and LDED-processed Nd-Fe-B deposits exhibited poor magnetic properties.In contrast,employing the high values of V(>10-2m s-1)and R(1.45×106?C s-1)in the LPBF process resulted in the substantial formation of the Nd2Fe14B hard magnetic phase(55.8 vol.%)directly from the liquid,while theα-Fe soft magnetic phase and Nd2Fe17Bxmetastable phase precipitation are suppressed in the LPBF-processed Nd-Fe-B magnet.Additionally,crystallographic texture analysis reveals that the LPBF-processedNd-Fe-B magnets exhibit isotropic magnetic characteristics.Consequently,the LPBF-processed Nd-Fe-B deposit,exhibiting a coercivity of 656 k A m-1,remanence of 0.79 T and maximum energy product of 71.5 k J m-3,achieved an acceptable magnetic performance,comparable to other additive manufacturing processed Nd-Fe-B magnets from MQP(Nd-lean)Nd-Fe-Bpowder.展开更多
Multi-level programmable photonic integrated circuits(PICs)and optical metasurfaces have gained widespread attention in many fields,such as neuromorphic photonics,opticalcommunications,and quantum information.In this ...Multi-level programmable photonic integrated circuits(PICs)and optical metasurfaces have gained widespread attention in many fields,such as neuromorphic photonics,opticalcommunications,and quantum information.In this paper,we propose pixelated programmable Si_(3)N_(4)PICs with record-high 20-level intermediate states at 785 nm wavelength.Such flexibility in phase or amplitude modulation is achieved by a programmable Sb_(2)S_(3)matrix,the footprint of whose elements can be as small as 1.2μm,limited only by the optical diffraction limit of anin-house developed pulsed laser writing system.We believe our work lays the foundation for laser-writing ultra-high-level(20 levels and even more)programmable photonic systems and metasurfaces based on phase change materials,which could catalyze diverse applications such as programmable neuromorphic photonics,biosensing,optical computing,photonic quantum computing,and reconfigurable metasurfaces.展开更多
UHP Mg-Ge alloys was recently found to provide excellent corrosion resistance.This paper provides new insights on the mechanism of improved corrosion resistance of UHP Mg-Ge alloys in Hanks’solution.The studied UHP M...UHP Mg-Ge alloys was recently found to provide excellent corrosion resistance.This paper provides new insights on the mechanism of improved corrosion resistance of UHP Mg-Ge alloys in Hanks’solution.The studied UHP Mg-0.5Ge and UHP Mg-1Ge alloys showed superior corrosion resistance compared to UHP Mg and WE43,with the Mg-1Ge exhibiting the best corrosion performance.The exceptional corrosion resistance of the UHP alloy is attributed to(i)Mg_(2)Ge’s ability to suppress cathodic kinetics,(ii)Ge’s capability to accelerate the formation of a highly passive layer,and the(iii)low amounts of corrosion-accelerating impurities.展开更多
Monitoring the electrophysiology activity of neurons and blood calcium signals can enable a better understanding of disease-related neural system circuits.However,currently,in situ calcium ion monitoring tools are sca...Monitoring the electrophysiology activity of neurons and blood calcium signals can enable a better understanding of disease-related neural system circuits.However,currently,in situ calcium ion monitoring tools are scarce and exhibit low integration and limited sensitivity.In this letter,we propose an implantable probe with an integrated in situ Ag/AgCl reference electrode(ISA/ARE)that can monitor action potential(AP)and Ca^(2+) concentrations.展开更多
Lithium-ion capacitors(LICs) combining the advantages of lithium-ion batteries and supercapacitors are considered a promising nextgeneration energy storage device. However, the sluggish kinetics of battery-type anode ...Lithium-ion capacitors(LICs) combining the advantages of lithium-ion batteries and supercapacitors are considered a promising nextgeneration energy storage device. However, the sluggish kinetics of battery-type anode cannot match the capacitor-type cathode, restricting the development of LICs. Herein, hierarchical carbon framework(HCF) anode material composed of 0D carbon nanocage bridged with 2D graphene network are developed via a template-confined synthesis process. The HCF with nanocage structure reduces the Li^(+) transport path and benefits the rapid Li^(+) migration, while 2D graphene network can promote the electron interconnecting of carbon nanocages. In addition, the doped N atoms in HCF facilitate to the adsorption of ions and enhance the pseudo contribution, thus accelerate the kinetics of the anode. The HCF anode delivers high specific capacity, remarkable rate capability. The LIC pouch-cell based on HCF anode and active HCF(a-HCF) cathode can provide a high energy density of 162 Wh kg^(-1) and a superior power density of 15.8 kW kg^(-1), as well as a long cycling life exceeding 15,000cycles. This study demonstrates that the well-defined design of hierarchical carbon framework by incorporating 0D carbon nanocages and 2D graphene network is an effective strategy to promote LIC anode kinetics and hence boost the LIC electrochemical performance.展开更多
This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualis...This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys.展开更多
21-4N(5Cr21Mn9Ni4N)is extensively employed in the production of engine valves,operating under severe conditions.Apart from withstanding high-temperature gas corrosion,it must also endure the impact of cylinder explosi...21-4N(5Cr21Mn9Ni4N)is extensively employed in the production of engine valves,operating under severe conditions.Apart from withstanding high-temperature gas corrosion,it must also endure the impact of cylinder explosion pressure.The predominant failure mode of 21-4N valves is abrasive wear.Surface coatings serve as an effective approach to prevent such failures.In this investigation,Laser cladding technology was utilized to fabricate AlCoCrFeNiTi high entropy alloy coatings onto the surfaces of 21-4N valves.According to the findings,the cladding zone has a normal dendritic microstructure,a good substrate-to-cladding layer interaction,and no obvious flaws.In terms of hardness,the cladding demonstrates an average hardness of 620 HV.The hardness has increased by 140%compared to the substrate.The average hardness of the cladding remains at approximately 520 HV even at elevated temperatures.Regarding frictional wear performance,between 400℃and 800℃,the cladding layer exhibits an average friction coefficient of 0.4,with the primary wear mechanisms being abrasive wear,adhesive wear,and a minor degree of plastic deformation.展开更多
Visual semantic segmentation aims at separating a visual sample into diverse blocks with specific semantic attributes and identifying the category for each block,and it plays a crucial role in environmental perception...Visual semantic segmentation aims at separating a visual sample into diverse blocks with specific semantic attributes and identifying the category for each block,and it plays a crucial role in environmental perception.Conventional learning-based visual semantic segmentation approaches count heavily on largescale training data with dense annotations and consistently fail to estimate accurate semantic labels for unseen categories.This obstruction spurs a craze for studying visual semantic segmentation with the assistance of few/zero-shot learning.The emergence and rapid progress of few/zero-shot visual semantic segmentation make it possible to learn unseen categories from a few labeled or even zero-labeled samples,which advances the extension to practical applications.Therefore,this paper focuses on the recently published few/zero-shot visual semantic segmentation methods varying from 2D to 3D space and explores the commonalities and discrepancies of technical settlements under different segmentation circumstances.Specifically,the preliminaries on few/zeroshot visual semantic segmentation,including the problem definitions,typical datasets,and technical remedies,are briefly reviewed and discussed.Moreover,three typical instantiations are involved to uncover the interactions of few/zero-shot learning with visual semantic segmentation,including image semantic segmentation,video object segmentation,and 3D segmentation.Finally,the future challenges of few/zero-shot visual semantic segmentation are discussed.展开更多
High-resolution multi-color printing relies upon pixelated optical nanostructures,which is crucial to promote color display by producing nonbleaching colors,yet requires simplicity in fabrication and dynamic switching...High-resolution multi-color printing relies upon pixelated optical nanostructures,which is crucial to promote color display by producing nonbleaching colors,yet requires simplicity in fabrication and dynamic switching.Antimony trisulfide(Sb_(2)S_(3))is a newly rising chalcogenide material that possesses prompt and significant transition of its optical characteristics in the visible region between amorphous and crystalline phases,which holds the key to color-varying devices.Herein,we proposed a dynamically switchable color printing method using Sb_(2)S_(3)-based stepwise pixelated Fabry-Pérot(FP)cavities with various cavity lengths.The device was fabricated by employing a direct laser patterning that is a less timeconsuming,more approachable,and low-cost technique.As switching the state of Sb_(2)S_(3) between amorphous and crystalline,the multi-color of stepwise pixelated FP cavities can be actively changed.The color variation is due to the profound change in the refractive index of Sb_(2)S_(3) over the visible spectrum during its phase transition.Moreover,we directly fabricated sub-50 nm nano-grating on ultrathin Sb_(2)S_(3) laminate via microsphere 800-nm femtosecond laser irradiation in far field.The minimum feature size can be further decreased down to~45 nm(λ/17)by varying the thickness of Sb_(2)S_(3) film.Ultrafast switchable Sb_(2)S_(3) photonic devices can take one step toward the next generation of inkless erasable papers or displays and enable information encryption,camouflaging surfaces,anticounterfeiting,etc.Importantly,our work explores the prospects of rapid and rewritable fabrication of periodic structures with nano-scale resolution and can serve as a guideline for further development of chalcogenide-based photonics components.展开更多
Biomedical magnesium(Mg)alloys have garnered significant attention because of their unique biodegradability,favorable biocompatibility,and suitable mechanical properties.The incorporation of rare earth(RE)elements,wit...Biomedical magnesium(Mg)alloys have garnered significant attention because of their unique biodegradability,favorable biocompatibility,and suitable mechanical properties.The incorporation of rare earth(RE)elements,with their distinct physical and chemical properties,has greatly contributed to enhancing the mechanical performance,degradation behavior,and biological performance of biomedical Mg alloys.Currently,a series of RE-Mg alloys are being designed and investigated for orthopedic implants and cardiovascular stents,achieving substantial and encouraging research progress.In this work,a comprehensive summary of the state-of-the-art in biomedical RE-Mg alloys is provided.The physiological effects and design standards of RE elements in biomedical Mg alloys are discussed.Particularly,the degradation behavior and mechanical properties,including their underlying action are studied in-depth.Furthermore,the preparation techniques and current application status of RE-Mg alloys are reviewed.Finally,we address the ongoing challenges and propose future prospects to guide the development of high-performance biomedical Mg-RE alloys.展开更多
Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors(ZICs)due to their high conductivity,good safety,and flexibility.However,freezing of electrolytes at low temperature(subzero)leads to dras...Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors(ZICs)due to their high conductivity,good safety,and flexibility.However,freezing of electrolytes at low temperature(subzero)leads to drastic reduction in ionic conductivity and mechanical properties that deteriorates the performance of flexible ZICs.Besides,the mechanical fracture during arbitrary deformations significantly prunes out the lifespan of the flexible device.Herein,a Zn^(2+)and Li^(+)co-doped,polypyrrole-dopamine decorated Sb_(2)S_(3)incorporated,and polyvinyl alcohol/poly(N-(2-hydroxyethyl)acrylamide)double-network hydrogel electrolyte is constructed with favorable mechanical reliability,anti-freezing,and self-healing ability.In addition,it delivers ultra-high ionic conductivity of 8.6 and 3.7 S m^(-1)at 20 and−30°C,respectively,and displays excellent mechanical properties to withstand tensile stress of 1.85 MPa with tensile elongation of 760%,together with fracture energy of 5.14 MJ m^(-3).Notably,the fractured hydrogel electrolyte can recover itself after only 90 s of infrared illumination,while regaining 83%of its tensile strain and almost 100%of its ionic conductivity during−30–60°C.Moreover,ZICs coupled with this hydrogel electrolyte not only show a wide voltage window(up to 2 V),but also provide high energy density of 230 Wh kg^(-1)at power density of 500 W kg^(-1)with a capacity retention of 86.7%after 20,000 cycles under 20°C.Furthermore,the ZICs are able to retain excellent capacity even under various mechanical deformation at−30°C.This contribution will open up new insights into design of advanced wearable flexible electronics with environmental adaptability and long-life span.展开更多
The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault lo...The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system.展开更多
基金Project(2022YFB3705103)supported by the National Key R&D Program,ChinaProject(2023CDJXY-020)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(cstc2021jcyj-msxmX1085)supported by Chongqing Natural Science Foundation General Project,China。
基金financially supported by National Key R&D Program of China(No.2021YFB3701100)Beijing Municipal Natural Science Foundation(No.2202004).
文摘In this investigation,a high-strength Mg-12Gd-1.0Er-0.5Zr(wt.%)alloy sheet was produced by hot extrusion(HE)and subsequent hard-plate rolling(HPR)at different temperatures.The results indicate that the microstructures of these final-rolled sheets are inhomogeneous,mainly including coarse deformed grains and dynamic recrystallized(DRXed)grains,and the volume fraction of these coarse deformed grains increases as the rolling temperature increases.Thus,more DRXed grains can be found in R-385℃sheet,resulting in a smaller average grain size and weaker basal texture,while the biggest grains and the highest strong basal texture are present in R-450℃sheet.Amounts of dynamic precipitation ofβphases which are mainly determined by the rolling temperature are present in these sheets,and its precipitation can consume the content of Gd solutes in the matrix.As a result,the lowest number density ofβphase in R-450℃sheet is beneficial to modify the age hardening response.Thus,the R-450℃sheet displays the best age hardening response because of a severe traditional precipitation ofβ’(more)andβH/βM(less)precipitates,resulting in a sharp improvement in strength,i.e.ultimate tensile strength(UTS)of∼518±17 MPa and yield strength(YS)of∼438±18 MPa.However,the elongation(EL)of this sheet reduces greatly,and its value is∼2.7±0.3%.By contrasting,the EL of the peak-aging R-385℃sheet keeps better,changing from∼4.9±1.2%to∼4.8±1.4%due to a novel dislocation-induced chain-like precipitate which is helpful to keep good balance between strength and ductility.
基金financially supported by the Natural Science Foundation of Hunan Province(Grant No.2021JJ40732)the Central South University Innovation-Driven Research Programme(Grant No.2023CXQD012)。
文摘Passive daytime radiative cooling(PDRC) is environment-friendly without energy input by enhancing the coating's solar reflectance(R_(solar)) and thermal emittance(ε_(LWIR)) in the atmosphere's long-wave infrared transmission window.However,high R_(solar) is usually achieved by increasing the coating's thickness,which not only increases materials' cost but also impairs heat transfer.Additionally,the desired high R_(solar) is vulnerable to dust pollution in the outdoors.In this work,a thin paint was designed by mixing hBN plates,PFOTS,and IPA. R_(solar)=0.963 and ε_(LWIR)=0.927 was achieved at a thickness of 150 μm due to the high backscattering ability of scatters.A high through-plane thermal conductivity(~1.82 W m^(-1) K^(-1)) also can be obtained.In addition,the porous structure coupled with the binder PFOTS resulted in a contact angle of 154°,demonstrating excellent durability under dust contamination.Outdoor experiments showed that the thin paint can obtain a 2.3℃ lower temperature for sub-ambient cooling than the reference PDRC coating in the daytime.Furtherly,the above-ambient heat dissipation performance can be enhanced by spraying the thin paint on a 3D heat sink,which was 15.7℃ lower than the reference 1D structure,demonstrating excellent performance for durable and scalable PDRC applications.
基金supported by the National Natural Science Foundation of China under Grants Nos.52165013 and 51565021.
文摘The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scanning techniques,and the 3D dynamic model of the rail-sleeper-ballast bed was constructed using the coupled discrete element method-multiflexible-body dynamics(DEM-MFBD)approach.We analyse the meso-mechanical dynamics of the ballast bed with USPs under dynamic load on a train and verify the correctness of the model in laboratory tests.It is shown that the deformation of the USPs increases the contact area between the sleeper and the ballast particles,and subsequently the number of contacts between them.As the depth of the granular ballast bed increases,the contact area becomes larger,and the contact force between the ballast particles gradually decreases.Under the action of the elastic USPs,the contact forces between ballast particles are reduced and the overall vibration level of the ballast bed can be reduced.The settlement of the granular ballast bed occurs mainly at the shallow position of the sleeper bottom,and the installation of the elastic USPs can be effective in reducing the stress on the ballast particles and the settlement of the ballast bed.
基金the National Natural Science Foundation of China(Grant number 51771178)Shaanxi Outstanding Youth Fund project(Grant number 2021JC-45)+2 种基金Key international cooperation projects in Shaanxi Province(Grant number 2020KWZ-007)the Major Program of Science and Technology in Shaanxi Province(Grant number20191102006)Open Fund of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body(Grant number 32115019)。
文摘The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification process,which cannot provide sufficient protection.In the current study,we design a double-layer epoxy composite coating on Mg alloy with enhanced anti-corrosion/wear properties,via the spin-assisted assembly technique.The outer layer is functionalized graphene(FG)in waterborne epoxy resin(WEP)and the inner layer is Ce-based conversion(Ce)film.The FG sheets can be homogeneously dispersed within the epoxy matrix to fill the intrinsic defects and improve the barrier capability.The Ce film connects the outer layer with the substrate,showing the transition effect.The corrosion rate of Ce/WEP/FG composite coating is 2131 times lower than that of bare Mg alloy,and the wear rate is decreased by~90%.The improved corrosion resistance is attributed to the labyrinth effect(hindering the penetration of corrosive medium)and the obstruction of galvanic coupling behavior.The synergistic effect derived from the FG sheet and blocking layer exhibits great potential in realizing the improvement of multi-functional integration,which will open up a new avenue for the development of novel composite protection coatings of Mg alloys.
基金support and encouragement of the Joint Funds of the National Natural Science Foundation of China(No.U21B2095)the Major Research Project of National Natural Science Foundation of China(No.91834303).
文摘This work investigated the pyrolysis reaction of waste resin in a fluidized bed reactor.It was found that the pyrolysis-generated ash would adhere to the surface of ceramic particles,causing particle agglomeration and defluidization.Adding kaolin could effectively inhibit the particle agglomeration during the fluidized pyrolysis reaction through physical isolation and chemical reaction.On the one hand,kaolin could form a coating layer on the surface of ceramic particles to prevent the adhesion of organic ash generated by the pyrolysis of resin.On the other hand,when a sufficient amount of kaolin(-0.2%(mass))was added,the activated kaolin could fully contact with the Na+ ions generated by the pyrolysis of resin and react to form a high-melting aluminosilicate mineral(nepheline),which could reduce the formation of low-melting-point sodium sulfate and thereby avoid the agglomeration of ceramic particles.
基金supported by the Natural Science Founda-tion of Beijing(Grant No.2182017,2202017).
文摘A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainable corrosion inhibitors are chosen to investigate the corrosion inhibition behavior of ionic liquid(ILs)during the LePEO process for LA91 magnesium-lithium(Mg-Li)alloy.Results show that the ionic liquid BmimBF_(4)participates in the LePEO coating formation process,causing an increment in coating thickness and surface roughness.The low conductivity of the ionic liquid is responsible for the voltage and breakdown voltage increases during the LePEO with IL process(LePEO-IL).After adding BmimBF_(4),corrosion current density decreases from 1.159×10^(−4)A·cm^(−2)to 8.143×10^(−6)A·cm^(−2).The impedance modulus increases to 1.048×10^(4)Ω·cm^(−2)and neutral salt spray remains intact for 24 h.The superior corrosion resistance of the LePEO coating assisted by ionic liquid could be mainly attributed to its compact and thick barrier layer and physical absorption of ionic liquid.The ionic liquid-assisted LePEO technique provides a promising approach to reducing energy consumption and improving film performance.
基金supported by the National Key R&D Program of China(Grant No.2022YFB4600300)the National Natural Science Foundation of China(No.U22A20189,52175364)the China Scholarship Council(Grant No.202206290134)。
文摘Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infuenced by the phase characteristics and microstructure.In this work,Nd-Fe-B magnets were manufactured using vacuum induction melting(VIM),laser directed energy deposition(LDED)and laser powder bed fusion(LPBF)technologies.Themicrostructure evolution and phase selection of Nd-Fe-B magnets were then clarified in detail.The results indicated that the solidification velocity(V)and cooling rate(R)are key factors in the phase selection.In terms of the VIM-casting Nd-Fe-B magnet,a large volume fraction of theα-Fe soft magnetic phase(39.7 vol.%)and Nd2Fe17Bxmetastable phase(34.7 vol.%)areformed due to the low R(2.3×10-1?C s-1),whereas only a minor fraction of the Nd2Fe14B hard magnetic phase(5.15 vol.%)is presented.For the LDED-processed Nd-Fe-B deposit,although the Nd2Fe14B hard magnetic phase also had a low value(3.4 vol.%)as the values of V(<10-2m s-1)and R(5.06×103?C s-1)increased,part of theα-Fe soft magnetic phase(31.7vol.%)is suppressed,and a higher volume of Nd2Fe17Bxmetastable phases(47.5 vol.%)areformed.As a result,both the VIM-casting and LDED-processed Nd-Fe-B deposits exhibited poor magnetic properties.In contrast,employing the high values of V(>10-2m s-1)and R(1.45×106?C s-1)in the LPBF process resulted in the substantial formation of the Nd2Fe14B hard magnetic phase(55.8 vol.%)directly from the liquid,while theα-Fe soft magnetic phase and Nd2Fe17Bxmetastable phase precipitation are suppressed in the LPBF-processed Nd-Fe-B magnet.Additionally,crystallographic texture analysis reveals that the LPBF-processedNd-Fe-B magnets exhibit isotropic magnetic characteristics.Consequently,the LPBF-processed Nd-Fe-B deposit,exhibiting a coercivity of 656 k A m-1,remanence of 0.79 T and maximum energy product of 71.5 k J m-3,achieved an acceptable magnetic performance,comparable to other additive manufacturing processed Nd-Fe-B magnets from MQP(Nd-lean)Nd-Fe-Bpowder.
基金funded by the National Nature Science Foundation of China(Grant Nos.52175509 and 52130504)National Key Research and Development Program of China(2017YFF0204705)2021 Postdoctoral Innovation Research Plan of Hubei Province(0106100226)。
文摘Multi-level programmable photonic integrated circuits(PICs)and optical metasurfaces have gained widespread attention in many fields,such as neuromorphic photonics,opticalcommunications,and quantum information.In this paper,we propose pixelated programmable Si_(3)N_(4)PICs with record-high 20-level intermediate states at 785 nm wavelength.Such flexibility in phase or amplitude modulation is achieved by a programmable Sb_(2)S_(3)matrix,the footprint of whose elements can be as small as 1.2μm,limited only by the optical diffraction limit of anin-house developed pulsed laser writing system.We believe our work lays the foundation for laser-writing ultra-high-level(20 levels and even more)programmable photonic systems and metasurfaces based on phase change materials,which could catalyze diverse applications such as programmable neuromorphic photonics,biosensing,optical computing,photonic quantum computing,and reconfigurable metasurfaces.
基金support of the Australian Research Council through the ARC Research Hub for Advanced Manufacturing of Medical Devices(IH150100024).J.Venezuela is also supported by the Advance Queensland Industry Research Fellowship(AQIRF114-2019RD2).
文摘UHP Mg-Ge alloys was recently found to provide excellent corrosion resistance.This paper provides new insights on the mechanism of improved corrosion resistance of UHP Mg-Ge alloys in Hanks’solution.The studied UHP Mg-0.5Ge and UHP Mg-1Ge alloys showed superior corrosion resistance compared to UHP Mg and WE43,with the Mg-1Ge exhibiting the best corrosion performance.The exceptional corrosion resistance of the UHP alloy is attributed to(i)Mg_(2)Ge’s ability to suppress cathodic kinetics,(ii)Ge’s capability to accelerate the formation of a highly passive layer,and the(iii)low amounts of corrosion-accelerating impurities.
基金supported by the STI 2030-Major Projects (Nos. 2022ZD0208601 and 2022ZD0208600)the National Key R&D Program of China (Nos. 2022YFF120301 and2020YFB1313502)+5 种基金the Fundamental Research Funds for the Central Universitiesthe Strategic Priority Research Program of Chinese Academy of Sciences (Nos. XDA25040100, XDA25040200, and XDA25040300)the National Natural Science Foundation of China(No. 42127807-03)the Shanghai Municipal Science and Technology Major Project (No. 2021SHZDZX)China Postdoctoral Science Foundation (No. 2023M732197)the Center for Advanced Electronic Materials and Devices (AEMD) of Shanghai Jiao Tong University,China
文摘Monitoring the electrophysiology activity of neurons and blood calcium signals can enable a better understanding of disease-related neural system circuits.However,currently,in situ calcium ion monitoring tools are scarce and exhibit low integration and limited sensitivity.In this letter,we propose an implantable probe with an integrated in situ Ag/AgCl reference electrode(ISA/ARE)that can monitor action potential(AP)and Ca^(2+) concentrations.
基金the financial support by the National Science Foundation of China(51822706 and 52107234)Beijing Natural Science Foundation(JQ19012)+2 种基金the DNL Cooperation Fund,CAS(DNL201912 and DNL201915)Innovation Academy for Green Manufacture Fund(IAGM2020C02)Youth Innovation Promotion Association,CAS(Y2021052).
文摘Lithium-ion capacitors(LICs) combining the advantages of lithium-ion batteries and supercapacitors are considered a promising nextgeneration energy storage device. However, the sluggish kinetics of battery-type anode cannot match the capacitor-type cathode, restricting the development of LICs. Herein, hierarchical carbon framework(HCF) anode material composed of 0D carbon nanocage bridged with 2D graphene network are developed via a template-confined synthesis process. The HCF with nanocage structure reduces the Li^(+) transport path and benefits the rapid Li^(+) migration, while 2D graphene network can promote the electron interconnecting of carbon nanocages. In addition, the doped N atoms in HCF facilitate to the adsorption of ions and enhance the pseudo contribution, thus accelerate the kinetics of the anode. The HCF anode delivers high specific capacity, remarkable rate capability. The LIC pouch-cell based on HCF anode and active HCF(a-HCF) cathode can provide a high energy density of 162 Wh kg^(-1) and a superior power density of 15.8 kW kg^(-1), as well as a long cycling life exceeding 15,000cycles. This study demonstrates that the well-defined design of hierarchical carbon framework by incorporating 0D carbon nanocages and 2D graphene network is an effective strategy to promote LIC anode kinetics and hence boost the LIC electrochemical performance.
基金supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region(152131/18E).
文摘This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys.
基金Sponsored by the Project to Enhance the Innovative Capabilities of Science and Technology SMEs of Shandong Province(Grant No.2023TSGC0531).
文摘21-4N(5Cr21Mn9Ni4N)is extensively employed in the production of engine valves,operating under severe conditions.Apart from withstanding high-temperature gas corrosion,it must also endure the impact of cylinder explosion pressure.The predominant failure mode of 21-4N valves is abrasive wear.Surface coatings serve as an effective approach to prevent such failures.In this investigation,Laser cladding technology was utilized to fabricate AlCoCrFeNiTi high entropy alloy coatings onto the surfaces of 21-4N valves.According to the findings,the cladding zone has a normal dendritic microstructure,a good substrate-to-cladding layer interaction,and no obvious flaws.In terms of hardness,the cladding demonstrates an average hardness of 620 HV.The hardness has increased by 140%compared to the substrate.The average hardness of the cladding remains at approximately 520 HV even at elevated temperatures.Regarding frictional wear performance,between 400℃and 800℃,the cladding layer exhibits an average friction coefficient of 0.4,with the primary wear mechanisms being abrasive wear,adhesive wear,and a minor degree of plastic deformation.
基金supported by National Key Research and Development Program of China(2021YFB1714300)the National Natural Science Foundation of China(62233005)+2 种基金in part by the CNPC Innovation Fund(2021D002-0902)Fundamental Research Funds for the Central Universities and Shanghai AI Labsponsored by Shanghai Gaofeng and Gaoyuan Project for University Academic Program Development。
文摘Visual semantic segmentation aims at separating a visual sample into diverse blocks with specific semantic attributes and identifying the category for each block,and it plays a crucial role in environmental perception.Conventional learning-based visual semantic segmentation approaches count heavily on largescale training data with dense annotations and consistently fail to estimate accurate semantic labels for unseen categories.This obstruction spurs a craze for studying visual semantic segmentation with the assistance of few/zero-shot learning.The emergence and rapid progress of few/zero-shot visual semantic segmentation make it possible to learn unseen categories from a few labeled or even zero-labeled samples,which advances the extension to practical applications.Therefore,this paper focuses on the recently published few/zero-shot visual semantic segmentation methods varying from 2D to 3D space and explores the commonalities and discrepancies of technical settlements under different segmentation circumstances.Specifically,the preliminaries on few/zeroshot visual semantic segmentation,including the problem definitions,typical datasets,and technical remedies,are briefly reviewed and discussed.Moreover,three typical instantiations are involved to uncover the interactions of few/zero-shot learning with visual semantic segmentation,including image semantic segmentation,video object segmentation,and 3D segmentation.Finally,the future challenges of few/zero-shot visual semantic segmentation are discussed.
基金support from the National Key Research and Development Program of China (2020YFA0714504,2019YFA0709100).
文摘High-resolution multi-color printing relies upon pixelated optical nanostructures,which is crucial to promote color display by producing nonbleaching colors,yet requires simplicity in fabrication and dynamic switching.Antimony trisulfide(Sb_(2)S_(3))is a newly rising chalcogenide material that possesses prompt and significant transition of its optical characteristics in the visible region between amorphous and crystalline phases,which holds the key to color-varying devices.Herein,we proposed a dynamically switchable color printing method using Sb_(2)S_(3)-based stepwise pixelated Fabry-Pérot(FP)cavities with various cavity lengths.The device was fabricated by employing a direct laser patterning that is a less timeconsuming,more approachable,and low-cost technique.As switching the state of Sb_(2)S_(3) between amorphous and crystalline,the multi-color of stepwise pixelated FP cavities can be actively changed.The color variation is due to the profound change in the refractive index of Sb_(2)S_(3) over the visible spectrum during its phase transition.Moreover,we directly fabricated sub-50 nm nano-grating on ultrathin Sb_(2)S_(3) laminate via microsphere 800-nm femtosecond laser irradiation in far field.The minimum feature size can be further decreased down to~45 nm(λ/17)by varying the thickness of Sb_(2)S_(3) film.Ultrafast switchable Sb_(2)S_(3) photonic devices can take one step toward the next generation of inkless erasable papers or displays and enable information encryption,camouflaging surfaces,anticounterfeiting,etc.Importantly,our work explores the prospects of rapid and rewritable fabrication of periodic structures with nano-scale resolution and can serve as a guideline for further development of chalcogenide-based photonics components.
基金supported by National Key Research and Development Program of China[2023YFB4605800]National Natural Science Foundation of China[51935014,52165043]+3 种基金JiangXi Provincial Natural Science Foundation of China[20224ACB204013,20224ACB214008]Jiangxi Provincial Cultivation Program for Academic and Technical Leaders of Major Subjects[20225BCJ23008]Anhui Provincial Natural Science Foundation[2308085ME171]The University Synergy Innovation Program of Anhui Province[GXXT-2023-025,GXXT-2023-026].
文摘Biomedical magnesium(Mg)alloys have garnered significant attention because of their unique biodegradability,favorable biocompatibility,and suitable mechanical properties.The incorporation of rare earth(RE)elements,with their distinct physical and chemical properties,has greatly contributed to enhancing the mechanical performance,degradation behavior,and biological performance of biomedical Mg alloys.Currently,a series of RE-Mg alloys are being designed and investigated for orthopedic implants and cardiovascular stents,achieving substantial and encouraging research progress.In this work,a comprehensive summary of the state-of-the-art in biomedical RE-Mg alloys is provided.The physiological effects and design standards of RE elements in biomedical Mg alloys are discussed.Particularly,the degradation behavior and mechanical properties,including their underlying action are studied in-depth.Furthermore,the preparation techniques and current application status of RE-Mg alloys are reviewed.Finally,we address the ongoing challenges and propose future prospects to guide the development of high-performance biomedical Mg-RE alloys.
基金supported by the National Natural Science Foundation of China(52174247 and 22302066)“Hejian”Innovative Talent Project of Hunan Province(No.2022RC1088)+1 种基金the Hunan Provincial Natural Science Foundation(2023JJ40255)the Scientific Research Foundation of Hunan Provincial Education(22B0599 and 23A0442)。
文摘Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors(ZICs)due to their high conductivity,good safety,and flexibility.However,freezing of electrolytes at low temperature(subzero)leads to drastic reduction in ionic conductivity and mechanical properties that deteriorates the performance of flexible ZICs.Besides,the mechanical fracture during arbitrary deformations significantly prunes out the lifespan of the flexible device.Herein,a Zn^(2+)and Li^(+)co-doped,polypyrrole-dopamine decorated Sb_(2)S_(3)incorporated,and polyvinyl alcohol/poly(N-(2-hydroxyethyl)acrylamide)double-network hydrogel electrolyte is constructed with favorable mechanical reliability,anti-freezing,and self-healing ability.In addition,it delivers ultra-high ionic conductivity of 8.6 and 3.7 S m^(-1)at 20 and−30°C,respectively,and displays excellent mechanical properties to withstand tensile stress of 1.85 MPa with tensile elongation of 760%,together with fracture energy of 5.14 MJ m^(-3).Notably,the fractured hydrogel electrolyte can recover itself after only 90 s of infrared illumination,while regaining 83%of its tensile strain and almost 100%of its ionic conductivity during−30–60°C.Moreover,ZICs coupled with this hydrogel electrolyte not only show a wide voltage window(up to 2 V),but also provide high energy density of 230 Wh kg^(-1)at power density of 500 W kg^(-1)with a capacity retention of 86.7%after 20,000 cycles under 20°C.Furthermore,the ZICs are able to retain excellent capacity even under various mechanical deformation at−30°C.This contribution will open up new insights into design of advanced wearable flexible electronics with environmental adaptability and long-life span.
基金the National Key Research and Development Program of China under Grant 2021YFB3301300the National Natural Science Foundation of China under Grant 62203213+1 种基金the Natural Science Foundation of Jiangsu Province under Grant BK20220332the Open Project Program of Fujian Provincial Key Laboratory of Intelligent Identification and Control of Complex Dynamic System under Grant 2022A0004.
文摘The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system.