Noninvasive gluoose monitoring development is critical for diabetic patient continuous moni-toring.However,almost all the available devices are invasive and painful.Noninvasive methods such as using spectroscopy have ...Noninvasive gluoose monitoring development is critical for diabetic patient continuous moni-toring.However,almost all the available devices are invasive and painful.Noninvasive methods such as using spectroscopy have shown some good results.Unfortunately,the drawback was that the tungsten halogen lamps 1usage that is impractical if applied on human skin.This paper compared the light emitting diode(LED)to traditional tungsten halogen lamps as light source for glucose detection where the type of light source plays an important role in achieving a good spectrum quality.Glucose concentration measurement has been developed as part of noninvasive technique using optical spectroscopy.Small change and overlapping in tungsten halogen results need to replace it with a more convenient light source such as LED.Based on the result obtained,the performance of LED for absorbance spectrum gives a signifcantly different and is directly proportional to the glucose concentration.The result shows a linear trend and scucssully detects lowest at 60 to 160 mg/dL glucose concentration.展开更多
The rapid growth and innovation of the various mobile communication technologies have caused a change in the paradigm of internet access. Wireless technologies such as WiM AX, WiFi and UM T S/LTE networks have shown g...The rapid growth and innovation of the various mobile communication technologies have caused a change in the paradigm of internet access. Wireless technologies such as WiM AX, WiFi and UM T S/LTE networks have shown great p otential in dominating the wireless access markets. The ex istence of various access technologies requires a means for seamless internetworking to provide an ywhere, anytime services without interruption in the ongoing session, especially in multimedia展开更多
This paper proposes a new involutive light-weight block cipher for resource-constraint environments called I-PRESENTTM. The design is based on the Present block cipher which is included in the ISO/IEC 29192 standard o...This paper proposes a new involutive light-weight block cipher for resource-constraint environments called I-PRESENTTM. The design is based on the Present block cipher which is included in the ISO/IEC 29192 standard on lightweight cryptography. The advantage of I-PRESENTTM is that the cipher is involutive such that the encryption circuit is identical to decryption. This is an advantage for environments which require the implementation of both circuits. The area requirement of I-PRESENTTM compares reasonably well with other similar ciphers such as PRINCE.展开更多
The advent of the latest technologies like the Internet of things(IoT)transforms the world from a manual to an automated way of lifestyle.Meanwhile,IoT sector open numerous security challenges.In traditional networks,...The advent of the latest technologies like the Internet of things(IoT)transforms the world from a manual to an automated way of lifestyle.Meanwhile,IoT sector open numerous security challenges.In traditional networks,intrusion detection and prevention systems(IDPS)have been the key player in the market to ensure security.The challenges to the conventional IDPS are implementation cost,computing power,processing delay,and scalability.Further,online machine learning model training has been an issue.All these challenges still question the IoT network security.There has been a lot of research for IoT based detection systems to secure the IoT devices such as centralized and distributed architecture-based detection systems.The centralized system has issues like a single point of failure and load balancing while distributed system design has scalability and heterogeneity hassles.In this study,we design and develop an agent-based hybrid prevention system based on software-defined networking(SDN)technology.The system uses lite weight agents with the ability to scaleup for bigger networks and is feasible for heterogeneous IoT devices.The baseline profile for the IoT devices has been developed by analyzing network flows from all the IoT devices.This profile helps in extracting IoT device features.These features help in the development of our dataset that we use for anomaly detection.For anomaly detection,support vector machine has been used to detect internet control message protocol(ICMP)flood and transmission control protocol synchronize(TCP SYN)flood attacks.The proposed system based on machine learning model is fully capable of online and offline training.Other than detection accuracy,the system can fully mitigate the attacks using the software-defined technology SDN technology.The major goal of the research is to analyze the accuracy of the hybrid agent-based intrusion detection systems as compared to conventional centralized only solutions,especially under the flood attack conditions generated by the distributed denial of service(DDoS)attacks.The system shows 97%to 99%accuracy in simulated results with no false-positive alarm.Also,the system shows notable improvement in terms of resource utilization and performance under attack scenarios. The R-IDPS is scalable, and thesystem is suitable for heterogeneous IoT devices and networks.展开更多
Cryptographic hash functions are built up from individual components, namely pre-processing, step transformation, and final processing. Some of the hash functions, such as SHA-256 and STITCH-256, employ non-linear mes...Cryptographic hash functions are built up from individual components, namely pre-processing, step transformation, and final processing. Some of the hash functions, such as SHA-256 and STITCH-256, employ non-linear message expansion in their pre-processing stage. However, STITCH-256 was claimed to produce high diffusion in its message expansion. In a cryptographic algorithm, high diffusion is desirable as it helps prevent an attacker finding collision-producing differences, which would allow one to find collisions of the whole function without resorting to a brute force search. In this paper, we analyzed the diffusion property of message expansion of STITCH-256 by observing the effect of a single bit difference over the output bits, and compare the result with that of SHA-256. We repeated the same procedure in 3 experiments of different round. The results from the experiments showed that the minimal weight in the message expansion of STITCH-256 is very much lower than that in the message expansion of SHA-256, i.e. message expansion of STITCH-256 produce high diffusion. Significantly, we showed that the probability to construct differential characteristic in the message expansion of STITCH-256 is reduced.展开更多
With the deployment of heterogeneous networks, mobile users are expecting ubiquitous connectivity when using applications. For bandwidth-intensive applications such as Internet Protocol Television(IPTV), multimedia co...With the deployment of heterogeneous networks, mobile users are expecting ubiquitous connectivity when using applications. For bandwidth-intensive applications such as Internet Protocol Television(IPTV), multimedia contents are typically transmitted using a multicast delivery method due to its bandwidth efficiency. However, not all networks support multicasting. Multicasting alone could lead to service disruption when the users move from a multicast-capable network to a non-multicast network. In this paper, we propose a handover scheme called application layer seamless switching(ALSS) to provide smooth real-time multimedia delivery across unicast and multicast networks. ALSS adopts a soft handover to achieve seamless playback during the handover period. A real-time streaming testbed is implemented to investigate the overall handover performance, especially the overlapping period where both network interfaces are receiving audio and video packets. Both the quality of service(QoS) and objective-mapped quality of experience(QoE) metrics are measured. Experimental results show that the overlapping period takes a minimum of 56 and 4 ms for multicast-to-unicast(M2U) and unicast-to-multicast(U2M) handover, respectively. The measured peak signal-to-noise ratio(PSNR) confirms that the frame-by-frame quality of the streamed video during the handover is at least 33 dB, which is categorized as good based on ITU-T recommendations. The estimated mean opinion score(MOS) in terms of video playback smoothness is also at a satisfactory level.展开更多
文摘Noninvasive gluoose monitoring development is critical for diabetic patient continuous moni-toring.However,almost all the available devices are invasive and painful.Noninvasive methods such as using spectroscopy have shown some good results.Unfortunately,the drawback was that the tungsten halogen lamps 1usage that is impractical if applied on human skin.This paper compared the light emitting diode(LED)to traditional tungsten halogen lamps as light source for glucose detection where the type of light source plays an important role in achieving a good spectrum quality.Glucose concentration measurement has been developed as part of noninvasive technique using optical spectroscopy.Small change and overlapping in tungsten halogen results need to replace it with a more convenient light source such as LED.Based on the result obtained,the performance of LED for absorbance spectrum gives a signifcantly different and is directly proportional to the glucose concentration.The result shows a linear trend and scucssully detects lowest at 60 to 160 mg/dL glucose concentration.
基金supported by the University of Malaya under the Research University under Grant No. RG064/11ICT
文摘The rapid growth and innovation of the various mobile communication technologies have caused a change in the paradigm of internet access. Wireless technologies such as WiM AX, WiFi and UM T S/LTE networks have shown great p otential in dominating the wireless access markets. The ex istence of various access technologies requires a means for seamless internetworking to provide an ywhere, anytime services without interruption in the ongoing session, especially in multimedia
文摘This paper proposes a new involutive light-weight block cipher for resource-constraint environments called I-PRESENTTM. The design is based on the Present block cipher which is included in the ISO/IEC 29192 standard on lightweight cryptography. The advantage of I-PRESENTTM is that the cipher is involutive such that the encryption circuit is identical to decryption. This is an advantage for environments which require the implementation of both circuits. The area requirement of I-PRESENTTM compares reasonably well with other similar ciphers such as PRINCE.
基金The authors would like to express their gratitude to the sponsor,as this research was funded by the University of Malaya in Malaysia(GrantNo.GPF017D-2019).
文摘The advent of the latest technologies like the Internet of things(IoT)transforms the world from a manual to an automated way of lifestyle.Meanwhile,IoT sector open numerous security challenges.In traditional networks,intrusion detection and prevention systems(IDPS)have been the key player in the market to ensure security.The challenges to the conventional IDPS are implementation cost,computing power,processing delay,and scalability.Further,online machine learning model training has been an issue.All these challenges still question the IoT network security.There has been a lot of research for IoT based detection systems to secure the IoT devices such as centralized and distributed architecture-based detection systems.The centralized system has issues like a single point of failure and load balancing while distributed system design has scalability and heterogeneity hassles.In this study,we design and develop an agent-based hybrid prevention system based on software-defined networking(SDN)technology.The system uses lite weight agents with the ability to scaleup for bigger networks and is feasible for heterogeneous IoT devices.The baseline profile for the IoT devices has been developed by analyzing network flows from all the IoT devices.This profile helps in extracting IoT device features.These features help in the development of our dataset that we use for anomaly detection.For anomaly detection,support vector machine has been used to detect internet control message protocol(ICMP)flood and transmission control protocol synchronize(TCP SYN)flood attacks.The proposed system based on machine learning model is fully capable of online and offline training.Other than detection accuracy,the system can fully mitigate the attacks using the software-defined technology SDN technology.The major goal of the research is to analyze the accuracy of the hybrid agent-based intrusion detection systems as compared to conventional centralized only solutions,especially under the flood attack conditions generated by the distributed denial of service(DDoS)attacks.The system shows 97%to 99%accuracy in simulated results with no false-positive alarm.Also,the system shows notable improvement in terms of resource utilization and performance under attack scenarios. The R-IDPS is scalable, and thesystem is suitable for heterogeneous IoT devices and networks.
文摘Cryptographic hash functions are built up from individual components, namely pre-processing, step transformation, and final processing. Some of the hash functions, such as SHA-256 and STITCH-256, employ non-linear message expansion in their pre-processing stage. However, STITCH-256 was claimed to produce high diffusion in its message expansion. In a cryptographic algorithm, high diffusion is desirable as it helps prevent an attacker finding collision-producing differences, which would allow one to find collisions of the whole function without resorting to a brute force search. In this paper, we analyzed the diffusion property of message expansion of STITCH-256 by observing the effect of a single bit difference over the output bits, and compare the result with that of SHA-256. We repeated the same procedure in 3 experiments of different round. The results from the experiments showed that the minimal weight in the message expansion of STITCH-256 is very much lower than that in the message expansion of SHA-256, i.e. message expansion of STITCH-256 produce high diffusion. Significantly, we showed that the probability to construct differential characteristic in the message expansion of STITCH-256 is reduced.
基金Project supported by the Ministry of Science,Technology and Innovation under the eScienceFund(No.01-01-03-SF0782)MIMOS Berhad
文摘With the deployment of heterogeneous networks, mobile users are expecting ubiquitous connectivity when using applications. For bandwidth-intensive applications such as Internet Protocol Television(IPTV), multimedia contents are typically transmitted using a multicast delivery method due to its bandwidth efficiency. However, not all networks support multicasting. Multicasting alone could lead to service disruption when the users move from a multicast-capable network to a non-multicast network. In this paper, we propose a handover scheme called application layer seamless switching(ALSS) to provide smooth real-time multimedia delivery across unicast and multicast networks. ALSS adopts a soft handover to achieve seamless playback during the handover period. A real-time streaming testbed is implemented to investigate the overall handover performance, especially the overlapping period where both network interfaces are receiving audio and video packets. Both the quality of service(QoS) and objective-mapped quality of experience(QoE) metrics are measured. Experimental results show that the overlapping period takes a minimum of 56 and 4 ms for multicast-to-unicast(M2U) and unicast-to-multicast(U2M) handover, respectively. The measured peak signal-to-noise ratio(PSNR) confirms that the frame-by-frame quality of the streamed video during the handover is at least 33 dB, which is categorized as good based on ITU-T recommendations. The estimated mean opinion score(MOS) in terms of video playback smoothness is also at a satisfactory level.