期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Application of a new wind driving force model in soil wind erosion area of northern China 被引量:2
1
作者 ZOU Xueyong LI Huiru +5 位作者 LIU Wei WANG Jingpu CHENG Hong WU Xiaoxu ZHANG Chunlai KANG Liqiang 《Journal of Arid Land》 SCIE CSCD 2020年第3期423-435,共13页
The shear stress generated by the wind on the land surface is the driving force that results in the wind erosion of the soil.It is an independent factor influencing soil wind erosion.The factors related to wind erosiv... The shear stress generated by the wind on the land surface is the driving force that results in the wind erosion of the soil.It is an independent factor influencing soil wind erosion.The factors related to wind erosivity,known as submodels,mainly include the weather factor(WF)in revised wind erosion equation(RWEQ),the erosion submodel(ES)in wind erosion prediction system(WEPS),as well as the drift potential(DP)in wind energy environmental assessment.However,the essential factors of WF and ES contain wind,soil characteristics and surface coverings,which therefore results in the interdependence between WF or ES and other factors(e.g.,soil erodible factor)in soil erosion models.Considering that DP is a relative indicator of the wind energy environment and does not have the value of expressing wind to induce shear stress on the surface.Therefore,a new factor is needed to express accurately wind erosivity.Based on the theoretical basis that the soil loss by wind erosion(Q)is proportional to the shear stress of the wind on the soil surface,a new model of wind driving force(WDF)was established,which expresses the potential capacity of wind to drive soil mass in per unit area and a period of time.Through the calculations in the typical area,the WDF,WF and DP are compared and analyzed from the theoretical basis,construction goal,problem-solving ability and typical area application;the spatial distribution of soil wind erosion intensity was concurrently compared with the spatial distributions of the WDF,WF and DP values in the typical area.The results indicate that the WDF is better to reflect the potential capacity of wind erosivity than WF and DP,and that the WDF model is a good model with universal applicability and can be logically incorporated into the soil wind erosion models. 展开更多
关键词 soil wind erosion wind driving force weather factor drift potential WDF(wind driving force)model
下载PDF
Separating emitted dust from the total suspension in airflow based on the characteristics of PM10 vertical concentration profiles on a Gobi surface in northwestern China
2
作者 ZHANG Chunlai WANG Xuesong +2 位作者 CEN Songbo ZHENG Zhongquan Charlie WANG Zhenting 《Journal of Arid Land》 SCIE CSCD 2022年第6期589-603,共15页
During aeolian processes,the two most critical factors related to dust emissions are soil particle and aggregate saltation,which greatly affect the vertical profiles of near-surface dust concentrations.In this study,w... During aeolian processes,the two most critical factors related to dust emissions are soil particle and aggregate saltation,which greatly affect the vertical profiles of near-surface dust concentrations.In this study,we measured PM10 concentrations at four different heights(0.10,0.50,1.00 and 2.00 m)with and without continuous and simultaneous aeolian saltation processes on a Gobi surface in northwestern China from 31 March to 10 April,2017.We found that the vertical concentration profiles of suspended PM10 matched the log-law model well when there was no aeolian saltation.For the erosion process with saltation,we divided the vertical concentration profiles of PM10 into the saltation-affected layer and the airflow-transport layer according to two different dust sources(i.e.,locally emitted PM10 and upwind transported PM10).The transition height between the saltation-affected layer and the airflow-transport layer was not fixed and varied with saltation intensity.From this new perspective,we calculated the airflow-transport layer and the dust emission rate at different times during a wind erosion event occurred on 5 April 2017.We found that dust emissions during wind erosion are primarily controlled by saltation intensity,contributing little to PM10 concentrations above the ground surface compared to PM10 concentrations transported from upwind directions.As erosion progresses,the surface supply of erodible grains is the most crucial factor for saltation intensity.When there was a sufficient amount of erodible grains,there was a significant correlation among the friction velocity,saltation intensity and dust emission rate.However,when supply is limited by factors such as surface renewal or an increase in soil moisture,the friction velocity will not necessarily correlate with the other two factors.Therefore,for the Gobi surface,compared to limiting dust emissions from upwind directions,restricting the transport of suspended dust in its path is by far a more efficient and realistic option for small areas that are often exposed to dust storms.This study provides some theoretical basis for correctly estimating PM10 concentrations in the Gobi areas. 展开更多
关键词 PM10 vertical concentration profiles dust emission rate saltation intensity suspensions Gobi surface
下载PDF
The varying fetch effect of aeolian sand transport above a gobi surface and its implication for gobi development process 被引量:2
3
作者 Chunlai Zhang Guoru Wei +3 位作者 Xueyong Zou Zhenting Wang Qing Li Xuesong Wang 《International Soil and Water Conservation Research》 SCIE CSCD 2022年第4期623-634,共12页
The Gobi deserts are important landscapes and major sandstorm source areas in arid northwestern China.Unsaturated sand flow and decreasing sand supply capacity is well known as the basic characteristics of gobi surfac... The Gobi deserts are important landscapes and major sandstorm source areas in arid northwestern China.Unsaturated sand flow and decreasing sand supply capacity is well known as the basic characteristics of gobi surface,but relatively little attention has been paid to the fetch effect of sand transport which is closely related to sand supply and indicative of wind erosion process in gobi.Using a field experiment,we investigated the spatial and temporal variations on a manually disturbed gobi surface downwind a sand-blocking belt and a sand-fixing belt by measuring the sand transport rate and the height profile of flux density at different fetch lengths during a sequence of wind erosion events.Results showed that the sand supply capacity determined the critical fetch length(Lc)for the sand transport rate so that the fetch effect varied with wind erosion proceeding due to depletion of erodible material.The height profile of flux density above the surface followed two distributions:an exponential decrease with increasing height,which commonly occurred above the newly treated gobi surface during the early wind erosion events;or a Lorentzian distribution with a peak flux at a certain height,which often happened in the later wind erosion events.The varying fetch effect,decreasing sand transport rates,and the nonerodible area expanded downwind are an epitome of the gobi development and expansion process from the perspective of wind erosion. 展开更多
关键词 GOBI Wind erosion Sand transport Fetch effect Gobi development
原文传递
Wind Erosion Climate Change in Northern China During 1981-2016
4
作者 Feng Zhang Jing'ai Wang +3 位作者 Xueyong Zou Rui Mao Daoyi Gong Xingya Feng 《International Journal of Disaster Risk Science》 SCIE CSCD 2020年第4期484-496,共13页
Wind erosion is largely controlled by climate conditions.In this study,we examined the influences of changes in wind speed,soil wetness,snow cover,and vegetation cover related to climate change on wind erosion in nort... Wind erosion is largely controlled by climate conditions.In this study,we examined the influences of changes in wind speed,soil wetness,snow cover,and vegetation cover related to climate change on wind erosion in northern China during 1981–2016.We used the wind erosion force,defined as wind factor in the Revised Wind Erosion Equation Model,to describe the effect of wind speed on wind erosion.The results show that wind erosion force presented a long-term decreasing trend in the southern Northwest,northern Northwest,and eastern northern China during 1981–2016.In the Gobi Desert,the wind erosion force presented for 1981–1992 a decreasing trend,for 1992–2012 an increasing trend,and thereafter a weakly decreasing trend.In comparison to wind speed,soil wetness and snow cover had weaker influences on wind erosion in northern China,while vegetation cover played a significant role in the decrease of wind erosion in the eastern northern China during 1982–2015. 展开更多
关键词 Northern China RWEQ model Wind erosion Wind erosion force Heavy wind frequency
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部