The skip-stop operation strategy (SOS) is rarely applied to Chinese urban rail transit networks because it is a simple scheme and a less universally popular transportation service. However, the SOS has performance a...The skip-stop operation strategy (SOS) is rarely applied to Chinese urban rail transit networks because it is a simple scheme and a less universally popular transportation service. However, the SOS has performance advantages, in that the total trip time can be reduced depending on the number of skipped stations, crowds of passengers can be rapidly evacuated at congested stations in peak periods, and the cost to transit companies is reduced. There is a contradiction between reducing the trip time under the SOS and increasing the passengers' waiting times under an all-stop scheme. Given this situation, the three objectives of our study were to minimize the waiting and trip times of all passengers and the travel times of trains. A comprehensive estimation model is presented for the SOS. The mechanism through which the trip time for all passengers is affected by the SOS is analyzed in detail. A 0-I integer programming formulation is established for the three objectives, and is solved using a tabu search algorithm. Finally, an example is presented to demonstrate that the estimation method for the SOS is capable of optimizing the timetable and operation schemes for a Chinese urban rail transit network.展开更多
The aim of this paper is to study traffic properties in an on/off-ramp system with a bus stop close to the on/off ramp. The location of the bus stop in the on/off-ramp (thereafter downstream or upstream case) is dis...The aim of this paper is to study traffic properties in an on/off-ramp system with a bus stop close to the on/off ramp. The location of the bus stop in the on/off-ramp (thereafter downstream or upstream case) is discussed. The simulation results show that in the two ramp systems, the reasons for traffic congestions are different. In the on-ramp system, buses and cars coming from on-ramp interweave each other, while in the off-ramp system, buses interweave with cars exiting to off-ramp. Thus, in the on-ramp (off-ramp) system, the upstream (downstream) bus stop is helpful to reduce the interweaving situation. Moreover, the negative effect will disappear when the distance between the bus stop and the on/off-ramp is more than 20 cells (i.e. 150 m). These qualitative findings may provide some suggestions on traffic management and optimization.展开更多
The full velocity difference model proposed by Jiang et al. [2001 Phys. Rev. E 64 017101] has been improved by introducing velocity anticipation. Velocity anticipation means the follower estimates the future velocity ...The full velocity difference model proposed by Jiang et al. [2001 Phys. Rev. E 64 017101] has been improved by introducing velocity anticipation. Velocity anticipation means the follower estimates the future velocity of the leader. The stability condition of the new model is obtained by using the linear stability theory. Theoretical results show that the stability region increases when we increase the anticipation time interval. The mKdV equation is derived to describe the kink-antikink soliton wave and obtain the coexisting stability line. The delay time of car motion and kinematic wave speed at jam density are obtained in this modeh Numerical simulations exhibit that when we increase the anticipation time interval enough, the new model could avoid accidents under urgent braking cases. Also, the traffic jam could be suppressed by considering the anticipation velocity. All results demonstrate that this model is an improvement on the full velocity difference model.展开更多
The on-line estimation of the state of charge (SOC) of the batteries is important for the reliable running of the pure electric vehicle in practice. Because a nonlinear feature exists in the batteries and the radial...The on-line estimation of the state of charge (SOC) of the batteries is important for the reliable running of the pure electric vehicle in practice. Because a nonlinear feature exists in the batteries and the radial-basis-function neural network (RBF NN) has good characteristics to solve the nonlinear problem, a practical method for the SOC estimation of batteries based on the RBF NN with a small number of input variables and a simplified structure is proposed. Firstly, in this paper, the model of on-line SOC estimation with the RBF NN is set. Secondly, four important factors for estimating the SOC are confirmed based on the contribution analysis method, which simplifies the input variables of the RBF NN and enhttnces the real-time performance of estimation. FiItally, the pure electric buses with LiFePO4 Li-ion batteries running during the period of the 2010 Shanghai World Expo are considered as the experimental object. The performance of the SOC estimation is validated and evaluated by the battery data from the electric vehicle.展开更多
A mixed strategy of the exit selection in a pedestrian evacuation simulation with multi-exits is constructed by fusing the distance-based and time-based strategies through a cognitive coefficient, in order to reduce t...A mixed strategy of the exit selection in a pedestrian evacuation simulation with multi-exits is constructed by fusing the distance-based and time-based strategies through a cognitive coefficient, in order to reduce the evacuation imbalance caused by the asymmetry of exits or pedestrian layout, to find a critical density to distinguish whether the strategy of exit selection takes effect or not, and to analyze the exit selection results with different cognitive coefficients. The strategy of exit selection is embedded in the computation of the shortest estimated distance in a dynamic parameter model, in which the concept of a jam area layer and the procedure of step-by-step expending are introduced. Simulation results indicate the characteristics of evacuation time gradually varying against cognitive coefficient and the effectiveness of reducing evacuation imbalance caused by the asymmetry of pedestrian or exit layout. It is found that there is a critical density to distinguish whether a pedestrian jam occurs in the evacuation and whether an exit selection strategy is in effect. It is also shown that the strategy of exit selection has no effect on the evacuation process in the no-effect phase with a low density, and that evacuation time and exit selection are dependent on the cognitive coefficient and pedestrian initial density in the in-effect phase with a high density.展开更多
An improved dynamic parameter model is presented based on cellular automata.The dynamic parameters,including direction parameter,empty parameter,and cognition parameter,are formulated to simplify tactically the proces...An improved dynamic parameter model is presented based on cellular automata.The dynamic parameters,including direction parameter,empty parameter,and cognition parameter,are formulated to simplify tactically the process of making decisions for pedestrians.The improved model reflects the judgement of pedestrians on surrounding conditions and the action of choosing or decision.According to the two-dimensional cellular automaton Moore neighborhood we establish the pedestrian moving rule,and carry out corresponding simulations of pedestrian evacuation.The improved model considers the impact of pedestrian density near exits on the evacuation process.Simulated and experimental results demonstrate that the improvement makes sense due to the fact that except for the spatial distance to exits,people also choose an exit according to the pedestrian density around exits.The impact factors 伪,尾,and 纬 are introduced to describe transition payoff,and their optimal values are determined through simulation.Moreover,the effects of pedestrian distribution,pedestrian density,and the width of exits on the evacuation time are discussed.The optimal exit layout,i.e.,the optimal position and width,is offered.The comparison between the simulated results obtained with the improved model and that from a previous model and experiments indicates that the improved model can reproduce experimental results well.Thus,it has great significance for further study,and important instructional meaning for pedestrian evacuation so as to reduce the number of casualties.展开更多
The violation of monotonicity on reliability measures(RMs)usually makes the mathematical programming algorithms less efficient in solving the reliability-based user equilibrium(RUE)problem.The swapping algorithms prov...The violation of monotonicity on reliability measures(RMs)usually makes the mathematical programming algorithms less efficient in solving the reliability-based user equilibrium(RUE)problem.The swapping algorithms provide a simple and convenient alternative to search traffic equilibrium since they are derivative-free and require weaker monotonicity.However,the existing swapping algorithms are usually based on linear swapping processes which cannot naturally avoid overswapping,and the step-size parameter update methods do not take the swapping feature into account.In this paper,we suggest a self-regulating pairwise swapping algorithm(SRPSA)to search RUE.SRPSA comprises an RM-based pairwise swapping process(RMPSP),a parameter self-diminishing operator and a termination criterion.SRPSA does not need to check the feasibility of either solutions or step-size parameter.It is suggested from the numerical analyses that SRPSA is effective and can swap to the quasi-RUE very fast.Therefore,SRPSA offers a good approach to generate initial points for those superior local search algorithms.展开更多
In this paper, a new lattice hydrodynamic model based on Nagatani's model INagatani T 1998 Physica A 261 5991 is presented by introducing the flow difference effect. The stability condition for the new model is obtai...In this paper, a new lattice hydrodynamic model based on Nagatani's model INagatani T 1998 Physica A 261 5991 is presented by introducing the flow difference effect. The stability condition for the new model is obtained by using the linear stability theory. The result shows that considering the flow difference effect leads to stabilization of the system compared with the original lattice hydrodynamic model. The jamming transitions among the freely moving phase, the coexisting phase, and the uniform congested phase are studied by nonlinear analysis. The modified KdV equation near the critical point is derived to describe the traffic jam, and kink -antikink soliton solutions related to the traffic density waves are obtained. The simulation results are consistent with the theoretical analysis for the new model.展开更多
In this paper, we present a new ear-following model, i.e. comprehensive optimal velocity model (COVM), whose optimal velocity function not only depends on the following distance of the preceding vehicle, but also de...In this paper, we present a new ear-following model, i.e. comprehensive optimal velocity model (COVM), whose optimal velocity function not only depends on the following distance of the preceding vehicle, but also depends on the velocity difference with preceding vehicle. Simulation results show that COVM is an improvement over the previous ones theoretically. Then, the stability condition of the model is obtained by the linear stability analysis, which has shown that the model could obtain a bigger stable region than previous models in the phase diagram. Through the nonlinear analysis, the Burgers, Korteweg-de Vries (KdV) and modified KdV (mKdV) equations are derived for the triangular shock wave, the soliton wave, and the kink-antikink soliton wave. At the same time, numerical simulations are also carried out to show that the model could simulate these density waves.展开更多
In this paper,the collective motion of self-driven robots is studied experimentally and theoretically.In the channel,the flowrate of robots increases with the density linearly,even if the density of the robots tends t...In this paper,the collective motion of self-driven robots is studied experimentally and theoretically.In the channel,the flowrate of robots increases with the density linearly,even if the density of the robots tends to 1.0.There is no abrupt drop in the flowrate,similar to the collective motion of ants.We find that the robots will adjust their velocities by a serial of tiny collisions.The speed-adjustment will affect both robots involved in the collision,and will help to maintain a nearly uniform velocity for the robots.As a result,the flowrate drop will disappear.In the motion,the robots neither gather together nor scatter completely.Instead,they form some clusters to move together.These clusters are not stable during the moving process,but their sizes follow a power-law-alike distribution.We propose a theoretical model to simulate this collective motion process,which can reproduce these behaviors well.Analytic results about the flowrate behavior are also consistent with experiments.展开更多
By means of game theory, the effect of compassion mechanism on the evacuation dynamics of pedestrians from a room is studied based on a cellular automaton model. Pedestrians can choose to cooperate or defect in a snow...By means of game theory, the effect of compassion mechanism on the evacuation dynamics of pedestrians from a room is studied based on a cellular automaton model. Pedestrians can choose to cooperate or defect in a snowdrift game during the movement. With the compassion mechanism, pedestrians share their payoff to the poorest peer when several pedestrians compete for the same empty cell. Simulation results show that the escape time grows with fear degree r of the snowdrift game, and the compassion mechanism will have a different effect on the system compared with the situation of a spatial game with fixed population. By payoff redistribution, the compassion can help the minor strategy to survive. When the fear degree r is large, the compassion can sustain the cooperative behavior, and spontaneously decreases the escape time. When the fear degree r is small, the compassion will decrease the cooperation frequency, and slightly increase the escape time. The phenomenon is explained by the evolution and competition of defectors and cooperators in the system. Finally, the effect of initial cooperator proportion, the effect of two exits, and the effect of "Richest-Following" strategy, and the effect of initial density are also discussed.展开更多
In this paper,computational models of environmental pollution and energy consumption of urban multimodal traffic network are proposed according to pertinent research and a multi-objective programming model is then dev...In this paper,computational models of environmental pollution and energy consumption of urban multimodal traffic network are proposed according to pertinent research and a multi-objective programming model is then developed to formulate optimization problem for such a system.Simultaneously,the main factors,such as travel time,pricing and convenience which influence travelers' choice behaviors are all considered and a combined assignment model is proposed to simulate travelers' mode and route choices.A bi-level programming model,in which the multi-objective optimization model is treated as the upper-level problem and the combined assignment model is processed as the lower-level problem,is then presented to solve multi-criterion system optimization problem for urban multimodal traffic network.The solution algorithms of the proposed models are also presented.Finally,the model and its algorithms are illustrated through a simple numerical example.展开更多
This paper uses the cellular automaton model to study the dynamics of traffic flow around an on-ramp with an acceleration lane. It adopts a parameter, which can reflect different lane-changing behaviour, to represent ...This paper uses the cellular automaton model to study the dynamics of traffic flow around an on-ramp with an acceleration lane. It adopts a parameter, which can reflect different lane-changing behaviour, to represent the diversity of driving behaviour. The refined cellular automaton model is used to describe the lower acceleration rate of a vehicle. The phase diagram and the capacity of the on-ramp system are investigated. The simulation results show that in the single cell model, the capacity of the on-ramp system will stay at the highest flow of a one lane system when the driver is moderate and careful; it will be reduced when the driver is aggressive. In the refined cellular automaton model, the capacity is always reduced even when the driver is careful. It proposes that the capacity drop of the on-ramp system is caused by aggressive lane-changing behaviour and lower acceleration rate.展开更多
We study an exclusion process with multiple dynamic roadblocks.Each roadblock can move diffusively forward or backward with different rates,as well as unbind from/rebind to a free site.By Monte Carlo simulations,the t...We study an exclusion process with multiple dynamic roadblocks.Each roadblock can move diffusively forward or backward with different rates,as well as unbind from/rebind to a free site.By Monte Carlo simulations,the two moving types are investigated in combination of roadblock number.The case of only diffusive roadblocks shows an asymmetric current-density relation.The case of only long-range jumping roadblocks presents that flux decreases with increasing roadblock number.展开更多
By introducing a flow difference effect, a modified lattice two-lane traffic flow model is proposed, which is proved to be capable of improving the stability of traffic flow. Both the linear stability condition and th...By introducing a flow difference effect, a modified lattice two-lane traffic flow model is proposed, which is proved to be capable of improving the stability of traffic flow. Both the linear stability condition and the kink-antikink solution derived from the modified Korteweg-de Vries (mKdV) equation are analyzed. Numerical simulations verify the theoretical analysis. Futhermore, the evolution laws under different disturbances in the metastable region are studied.展开更多
Considering the effect of multiple flux difference, an extended lattice model is proposed to improve the stability of traffic flow. The stability condition of the new model is obtained by using linear stability theory...Considering the effect of multiple flux difference, an extended lattice model is proposed to improve the stability of traffic flow. The stability condition of the new model is obtained by using linear stability theory. The theoretical analysis result shows that considering the flux difference effect ahead can stabilize traffic flow. The nonlinear analysis is also conducted by using a reduetive perturbation method. The modified KdV (mKdV) equation near the critical point is derived and the kink antikink solution is obtained from the mKdV equation. Numerical simulation results show that the multiple flux difference effect can suppress the traffic jam considerably, which is in line with the analytical result.展开更多
To investigate bicyclists' behavior at unsignalized intersections with mixed traffic flow, a bicycle capacity model of borrowed-priority merge was developed by the addition-conflict-flow procedure. Based on the actua...To investigate bicyclists' behavior at unsignalized intersections with mixed traffic flow, a bicycle capacity model of borrowed-priority merge was developed by the addition-conflict-flow procedure. Based on the actual traffic situation, the concept of borrowed priority, in which the majorroad bicycles borrow the priority of major-road cars to enter the intersections when consecutive headway for major-steam cars is lower than the critical gap for minor-road cars, was addressed. Bicycle capacity at a typical unsignalized intersection is derived by the addition-conflict-flow procedure. The proposes model was validated by the empirical investigation. Numerical results show that bicycle capacity at an intersection is the function of major-road and minor-road car streams. Bicycle capacity increases with increasing major-road cars but decreases with increasing minorroad cars.展开更多
In this paper, the evacuation dynamics in an artificial room with only one exit is investigated via experiments and modeling. Two sets of experiments are implemented, in which pedestrians are asked to escape individua...In this paper, the evacuation dynamics in an artificial room with only one exit is investigated via experiments and modeling. Two sets of experiments are implemented, in which pedestrians are asked to escape individually. It is found that the average evacuation time gap is essentially constant. To model the evacuation dynamics, an improved social force model is proposed, in which it is assumed that the driving force of a pedestrian cannot be performed when the resultant physical force exceeds a threshold. Simulation results are in good agreement with the experimental ones.展开更多
The combined bottleneck effect is investigated by modeling traffic systems with an on-ramp and a nearby bus stop in a two-lane cellular automaton model. Two cases, i.e. the bus stop locates in the downstream section o...The combined bottleneck effect is investigated by modeling traffic systems with an on-ramp and a nearby bus stop in a two-lane cellular automaton model. Two cases, i.e. the bus stop locates in the downstream section of the on-ramp and the bus stop locates in the upstream section of the on-ramp, are considered separately. The upstream flux and downstream flux of the main road, as well as the on-ramp flux are analysed in detail, with respect to the entering probabilities and the distance between the on-ramp and the bus stop. It is found that the combination of the two bottlenecks causes the capacity to drop off, because the vehicles entering the main road from the on-ramp would interweave with the stopping (pulling-out) buses in the downstream (upstream) case. The traffic conflict in the former case is much heavier than that in the latter, causing the downstream main road to be utilized inefficiently. This suggests that the bus stop should be set in the upstream section of the on-ramp to enhance the capacity. The fluxes both on the main road and on the on-ramp vary with the distance between the two bottlenecks in both cases. However, the effects of distance disappear gradually at large distances. These findings might give some guidance to traffic optimization and management.展开更多
With the rapid development of economy and motorization, the traffic congestion and environmental problems have become more and more serious day by day in Beijing. Therefore, traffic control policies have been graduall...With the rapid development of economy and motorization, the traffic congestion and environmental problems have become more and more serious day by day in Beijing. Therefore, traffic control policies have been gradually adopted by Beijing municipal government since 2008, so as to ease traffic and environmental problems. In this paper, the background and current situation of Beijing to implement traffic control policies are introduced, and also this measure is analyzed and evaluated from traffic effect, environmental effect, motor vehicle development, urban road development, public transport development, and balance between supply and demand, etc. Finally, related conclusions are drawn up as follows: an induced traffic volume will be generated by traffic control policies, and the effect of the traffic control will be erased by the natural growth rate of motor vehicles in three years; public traffic service should be improved for better making traffic control policies; the traffic congestion and environmental problems are alleviated by traffic control policies in the short term, but can't be fundamentally solved in the long run; traffic control policies should cooperate with other traffic demand management policies for reducing demands, and traffic condition should be optimized in both time and space, so that the traffic congestion and environmental problems will be fundamentally solved.展开更多
基金financed by the National Basic Research Program of China, under project ID 2012CB725403
文摘The skip-stop operation strategy (SOS) is rarely applied to Chinese urban rail transit networks because it is a simple scheme and a less universally popular transportation service. However, the SOS has performance advantages, in that the total trip time can be reduced depending on the number of skipped stations, crowds of passengers can be rapidly evacuated at congested stations in peak periods, and the cost to transit companies is reduced. There is a contradiction between reducing the trip time under the SOS and increasing the passengers' waiting times under an all-stop scheme. Given this situation, the three objectives of our study were to minimize the waiting and trip times of all passengers and the travel times of trains. A comprehensive estimation model is presented for the SOS. The mechanism through which the trip time for all passengers is affected by the SOS is analyzed in detail. A 0-I integer programming formulation is established for the three objectives, and is solved using a tabu search algorithm. Finally, an example is presented to demonstrate that the estimation method for the SOS is capable of optimizing the timetable and operation schemes for a Chinese urban rail transit network.
基金Supported by the National Basic Research Program of China under Grant No.2006CB705500the National Natural Science Foundation of China under Grant Nos.70631001,70701004,and 71071012
文摘The aim of this paper is to study traffic properties in an on/off-ramp system with a bus stop close to the on/off ramp. The location of the bus stop in the on/off-ramp (thereafter downstream or upstream case) is discussed. The simulation results show that in the two ramp systems, the reasons for traffic congestions are different. In the on-ramp system, buses and cars coming from on-ramp interweave each other, while in the off-ramp system, buses interweave with cars exiting to off-ramp. Thus, in the on-ramp (off-ramp) system, the upstream (downstream) bus stop is helpful to reduce the interweaving situation. Moreover, the negative effect will disappear when the distance between the bus stop and the on/off-ramp is more than 20 cells (i.e. 150 m). These qualitative findings may provide some suggestions on traffic management and optimization.
基金Project supported by the National Basic Research Program of China (Grant No. 2006CB705500)the National Natural Science Foundation of China (Grant Nos. 70501004, 70701004 and 70631001)the Program for New Century Talents in University,Ministry of Education, China (Grant No. NCET-07-0057)
文摘The full velocity difference model proposed by Jiang et al. [2001 Phys. Rev. E 64 017101] has been improved by introducing velocity anticipation. Velocity anticipation means the follower estimates the future velocity of the leader. The stability condition of the new model is obtained by using the linear stability theory. Theoretical results show that the stability region increases when we increase the anticipation time interval. The mKdV equation is derived to describe the kink-antikink soliton wave and obtain the coexisting stability line. The delay time of car motion and kinematic wave speed at jam density are obtained in this modeh Numerical simulations exhibit that when we increase the anticipation time interval enough, the new model could avoid accidents under urgent braking cases. Also, the traffic jam could be suppressed by considering the anticipation velocity. All results demonstrate that this model is an improvement on the full velocity difference model.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2011AA110303)the Beijing Municipal Science & Technology Project,China (Grant No. Z111100064311001)
文摘The on-line estimation of the state of charge (SOC) of the batteries is important for the reliable running of the pure electric vehicle in practice. Because a nonlinear feature exists in the batteries and the radial-basis-function neural network (RBF NN) has good characteristics to solve the nonlinear problem, a practical method for the SOC estimation of batteries based on the RBF NN with a small number of input variables and a simplified structure is proposed. Firstly, in this paper, the model of on-line SOC estimation with the RBF NN is set. Secondly, four important factors for estimating the SOC are confirmed based on the contribution analysis method, which simplifies the input variables of the RBF NN and enhttnces the real-time performance of estimation. FiItally, the pure electric buses with LiFePO4 Li-ion batteries running during the period of the 2010 Shanghai World Expo are considered as the experimental object. The performance of the SOC estimation is validated and evaluated by the battery data from the electric vehicle.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB725400)the National Natural Science Foundation of China(Grant No.11172035)+2 种基金the Fundamental Research Funds for the Central Universities of China(Grant No.2013JBM046)the China Postdoctoral Science Foundation(Grant Nos.20090460184 and 201003036)the Talent Foundation of Beijing Jiaotong University,China(Grant No.2012RC026)
文摘A mixed strategy of the exit selection in a pedestrian evacuation simulation with multi-exits is constructed by fusing the distance-based and time-based strategies through a cognitive coefficient, in order to reduce the evacuation imbalance caused by the asymmetry of exits or pedestrian layout, to find a critical density to distinguish whether the strategy of exit selection takes effect or not, and to analyze the exit selection results with different cognitive coefficients. The strategy of exit selection is embedded in the computation of the shortest estimated distance in a dynamic parameter model, in which the concept of a jam area layer and the procedure of step-by-step expending are introduced. Simulation results indicate the characteristics of evacuation time gradually varying against cognitive coefficient and the effectiveness of reducing evacuation imbalance caused by the asymmetry of pedestrian or exit layout. It is found that there is a critical density to distinguish whether a pedestrian jam occurs in the evacuation and whether an exit selection strategy is in effect. It is also shown that the strategy of exit selection has no effect on the evacuation process in the no-effect phase with a low density, and that evacuation time and exit selection are dependent on the cognitive coefficient and pedestrian initial density in the in-effect phase with a high density.
基金Project is supported by the National Natural Science Foundation of China (Grant Nos. 71071013,71001004,71071012,and71131001)the Fundamental Research Funds for the Central Universities,China (Grant No. 2011YJS241)
文摘An improved dynamic parameter model is presented based on cellular automata.The dynamic parameters,including direction parameter,empty parameter,and cognition parameter,are formulated to simplify tactically the process of making decisions for pedestrians.The improved model reflects the judgement of pedestrians on surrounding conditions and the action of choosing or decision.According to the two-dimensional cellular automaton Moore neighborhood we establish the pedestrian moving rule,and carry out corresponding simulations of pedestrian evacuation.The improved model considers the impact of pedestrian density near exits on the evacuation process.Simulated and experimental results demonstrate that the improvement makes sense due to the fact that except for the spatial distance to exits,people also choose an exit according to the pedestrian density around exits.The impact factors 伪,尾,and 纬 are introduced to describe transition payoff,and their optimal values are determined through simulation.Moreover,the effects of pedestrian distribution,pedestrian density,and the width of exits on the evacuation time are discussed.The optimal exit layout,i.e.,the optimal position and width,is offered.The comparison between the simulated results obtained with the improved model and that from a previous model and experiments indicates that the improved model can reproduce experimental results well.Thus,it has great significance for further study,and important instructional meaning for pedestrian evacuation so as to reduce the number of casualties.
基金Projects(71601015,71501013,71471014)supported by the National Natural Science Foundation of ChinaProject(2015JBM060)supported by the Fundamental Research Funds for the Central Universities,China
文摘The violation of monotonicity on reliability measures(RMs)usually makes the mathematical programming algorithms less efficient in solving the reliability-based user equilibrium(RUE)problem.The swapping algorithms provide a simple and convenient alternative to search traffic equilibrium since they are derivative-free and require weaker monotonicity.However,the existing swapping algorithms are usually based on linear swapping processes which cannot naturally avoid overswapping,and the step-size parameter update methods do not take the swapping feature into account.In this paper,we suggest a self-regulating pairwise swapping algorithm(SRPSA)to search RUE.SRPSA comprises an RM-based pairwise swapping process(RMPSP),a parameter self-diminishing operator and a termination criterion.SRPSA does not need to check the feasibility of either solutions or step-size parameter.It is suggested from the numerical analyses that SRPSA is effective and can swap to the quasi-RUE very fast.Therefore,SRPSA offers a good approach to generate initial points for those superior local search algorithms.
基金Project supported by the National Basic Research Program of China (Grant No. G2006CB705500)the National Natural Science Foundation of China (Grant Nos. 70501004,70701004 and 70631001)Program for New Century Excellent Talents in University(Grant No. NCET-07-0057)
文摘In this paper, a new lattice hydrodynamic model based on Nagatani's model INagatani T 1998 Physica A 261 5991 is presented by introducing the flow difference effect. The stability condition for the new model is obtained by using the linear stability theory. The result shows that considering the flow difference effect leads to stabilization of the system compared with the original lattice hydrodynamic model. The jamming transitions among the freely moving phase, the coexisting phase, and the uniform congested phase are studied by nonlinear analysis. The modified KdV equation near the critical point is derived to describe the traffic jam, and kink -antikink soliton solutions related to the traffic density waves are obtained. The simulation results are consistent with the theoretical analysis for the new model.
基金Supported by the National Natural Science Foundation of China under Grant Nos.71071013,71001004,and 71071012Foundation of Beijing Jiaotong University under Grant No.2009JBZ012-2
文摘In this paper, we present a new ear-following model, i.e. comprehensive optimal velocity model (COVM), whose optimal velocity function not only depends on the following distance of the preceding vehicle, but also depends on the velocity difference with preceding vehicle. Simulation results show that COVM is an improvement over the previous ones theoretically. Then, the stability condition of the model is obtained by the linear stability analysis, which has shown that the model could obtain a bigger stable region than previous models in the phase diagram. Through the nonlinear analysis, the Burgers, Korteweg-de Vries (KdV) and modified KdV (mKdV) equations are derived for the triangular shock wave, the soliton wave, and the kink-antikink soliton wave. At the same time, numerical simulations are also carried out to show that the model could simulate these density waves.
基金Project supported by the Key Research and Development Program,China(Grant No.2016YFC0802508)the National Natural Science Foundation of China(Grant Nos.11672289 and 11422221)
文摘In this paper,the collective motion of self-driven robots is studied experimentally and theoretically.In the channel,the flowrate of robots increases with the density linearly,even if the density of the robots tends to 1.0.There is no abrupt drop in the flowrate,similar to the collective motion of ants.We find that the robots will adjust their velocities by a serial of tiny collisions.The speed-adjustment will affect both robots involved in the collision,and will help to maintain a nearly uniform velocity for the robots.As a result,the flowrate drop will disappear.In the motion,the robots neither gather together nor scatter completely.Instead,they form some clusters to move together.These clusters are not stable during the moving process,but their sizes follow a power-law-alike distribution.We propose a theoretical model to simulate this collective motion process,which can reproduce these behaviors well.Analytic results about the flowrate behavior are also consistent with experiments.
基金Project supported by the Key Research and Development Program of China(Grant No.2016YFC0802508)the National Natural Science Foundation of China(Grant Nos.11672289 and 11422221)the support of Chinese Scholarship Council
文摘By means of game theory, the effect of compassion mechanism on the evacuation dynamics of pedestrians from a room is studied based on a cellular automaton model. Pedestrians can choose to cooperate or defect in a snowdrift game during the movement. With the compassion mechanism, pedestrians share their payoff to the poorest peer when several pedestrians compete for the same empty cell. Simulation results show that the escape time grows with fear degree r of the snowdrift game, and the compassion mechanism will have a different effect on the system compared with the situation of a spatial game with fixed population. By payoff redistribution, the compassion can help the minor strategy to survive. When the fear degree r is large, the compassion can sustain the cooperative behavior, and spontaneously decreases the escape time. When the fear degree r is small, the compassion will decrease the cooperation frequency, and slightly increase the escape time. The phenomenon is explained by the evolution and competition of defectors and cooperators in the system. Finally, the effect of initial cooperator proportion, the effect of two exits, and the effect of "Richest-Following" strategy, and the effect of initial density are also discussed.
基金supported by the National Natural Science Foundation of China (Grant Nos. 71071016, 70901005)the Fundamental Research Funds for the Central Universities (Grant Nos. 2009JBM040 and 2009JBZ012)funded by a Discovery Grant (Application No. 342485-07) from the Natural Science and Engineering Research Council (NSERC), Canada
文摘In this paper,computational models of environmental pollution and energy consumption of urban multimodal traffic network are proposed according to pertinent research and a multi-objective programming model is then developed to formulate optimization problem for such a system.Simultaneously,the main factors,such as travel time,pricing and convenience which influence travelers' choice behaviors are all considered and a combined assignment model is proposed to simulate travelers' mode and route choices.A bi-level programming model,in which the multi-objective optimization model is treated as the upper-level problem and the combined assignment model is processed as the lower-level problem,is then presented to solve multi-criterion system optimization problem for urban multimodal traffic network.The solution algorithms of the proposed models are also presented.Finally,the model and its algorithms are illustrated through a simple numerical example.
基金Project supported by the State Key Development Program for Basic Research of China (Grant No.2006CB705500)the National Natural Science Foundation of China (Grant Nos.70631001,70501004 and 70701004)+1 种基金Program for New Century Excellent Talents in University (Grant No.NCET-07-0057)the Innovation Foundation of Science and Technology for Excellent Doctorial Candidate of Beijing Jiaotong University (Grant No.48025)
文摘This paper uses the cellular automaton model to study the dynamics of traffic flow around an on-ramp with an acceleration lane. It adopts a parameter, which can reflect different lane-changing behaviour, to represent the diversity of driving behaviour. The refined cellular automaton model is used to describe the lower acceleration rate of a vehicle. The phase diagram and the capacity of the on-ramp system are investigated. The simulation results show that in the single cell model, the capacity of the on-ramp system will stay at the highest flow of a one lane system when the driver is moderate and careful; it will be reduced when the driver is aggressive. In the refined cellular automaton model, the capacity is always reduced even when the driver is careful. It proposes that the capacity drop of the on-ramp system is caused by aggressive lane-changing behaviour and lower acceleration rate.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB725404)the National Natural Science Foundation of China(Grant Nos.11422221,71171185,and 71371175)
文摘We study an exclusion process with multiple dynamic roadblocks.Each roadblock can move diffusively forward or backward with different rates,as well as unbind from/rebind to a free site.By Monte Carlo simulations,the two moving types are investigated in combination of roadblock number.The case of only diffusive roadblocks shows an asymmetric current-density relation.The case of only long-range jumping roadblocks presents that flux decreases with increasing roadblock number.
基金Project supported by the National Basic Research Program of China (Grant No. 2012CB725400)the National Natural Science Foundation of China (Grant Nos. 71131001, 71071012, and 11001143)the Fundamental Research Funds for the Central Universities of China (Grant No. 2011YJS235)
文摘By introducing a flow difference effect, a modified lattice two-lane traffic flow model is proposed, which is proved to be capable of improving the stability of traffic flow. Both the linear stability condition and the kink-antikink solution derived from the modified Korteweg-de Vries (mKdV) equation are analyzed. Numerical simulations verify the theoretical analysis. Futhermore, the evolution laws under different disturbances in the metastable region are studied.
基金supported by the National Natural Science Foundation of China (Grant Nos.70631001 and 71071012)the Fundamental Research Funds for the Central Universities (Grant Nos.2009JBM045 and 2011YJS235)
文摘Considering the effect of multiple flux difference, an extended lattice model is proposed to improve the stability of traffic flow. The stability condition of the new model is obtained by using linear stability theory. The theoretical analysis result shows that considering the flux difference effect ahead can stabilize traffic flow. The nonlinear analysis is also conducted by using a reduetive perturbation method. The modified KdV (mKdV) equation near the critical point is derived and the kink antikink solution is obtained from the mKdV equation. Numerical simulation results show that the multiple flux difference effect can suppress the traffic jam considerably, which is in line with the analytical result.
基金Supported by the National Basic Research Program of China (2012CB725400)the National Natural Science Foundation of China(70901005+2 种基金7107101671131001)Fundamental Research Funds for the Central Universities(2011JBM055)
文摘To investigate bicyclists' behavior at unsignalized intersections with mixed traffic flow, a bicycle capacity model of borrowed-priority merge was developed by the addition-conflict-flow procedure. Based on the actual traffic situation, the concept of borrowed priority, in which the majorroad bicycles borrow the priority of major-road cars to enter the intersections when consecutive headway for major-steam cars is lower than the critical gap for minor-road cars, was addressed. Bicycle capacity at a typical unsignalized intersection is derived by the addition-conflict-flow procedure. The proposes model was validated by the empirical investigation. Numerical results show that bicycle capacity at an intersection is the function of major-road and minor-road car streams. Bicycle capacity increases with increasing major-road cars but decreases with increasing minorroad cars.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11422221,11672289,71371175,and 71431003)
文摘In this paper, the evacuation dynamics in an artificial room with only one exit is investigated via experiments and modeling. Two sets of experiments are implemented, in which pedestrians are asked to escape individually. It is found that the average evacuation time gap is essentially constant. To model the evacuation dynamics, an improved social force model is proposed, in which it is assumed that the driving force of a pedestrian cannot be performed when the resultant physical force exceeds a threshold. Simulation results are in good agreement with the experimental ones.
基金Project supported by the National Basic Research Program of China (Grant No 2006CB705500)the National Natural Science Foundation of China (Grant Nos 70631001,70701004 and 70501004)
文摘The combined bottleneck effect is investigated by modeling traffic systems with an on-ramp and a nearby bus stop in a two-lane cellular automaton model. Two cases, i.e. the bus stop locates in the downstream section of the on-ramp and the bus stop locates in the upstream section of the on-ramp, are considered separately. The upstream flux and downstream flux of the main road, as well as the on-ramp flux are analysed in detail, with respect to the entering probabilities and the distance between the on-ramp and the bus stop. It is found that the combination of the two bottlenecks causes the capacity to drop off, because the vehicles entering the main road from the on-ramp would interweave with the stopping (pulling-out) buses in the downstream (upstream) case. The traffic conflict in the former case is much heavier than that in the latter, causing the downstream main road to be utilized inefficiently. This suggests that the bus stop should be set in the upstream section of the on-ramp to enhance the capacity. The fluxes both on the main road and on the on-ramp vary with the distance between the two bottlenecks in both cases. However, the effects of distance disappear gradually at large distances. These findings might give some guidance to traffic optimization and management.
基金National Natural Science Foundation of China (Youth Foundation): Study on the Operating Efficiency and Energy Consumption Optimization Methods of the Regional Passenger Transport System (71201006) (Xuesong FENG)
文摘With the rapid development of economy and motorization, the traffic congestion and environmental problems have become more and more serious day by day in Beijing. Therefore, traffic control policies have been gradually adopted by Beijing municipal government since 2008, so as to ease traffic and environmental problems. In this paper, the background and current situation of Beijing to implement traffic control policies are introduced, and also this measure is analyzed and evaluated from traffic effect, environmental effect, motor vehicle development, urban road development, public transport development, and balance between supply and demand, etc. Finally, related conclusions are drawn up as follows: an induced traffic volume will be generated by traffic control policies, and the effect of the traffic control will be erased by the natural growth rate of motor vehicles in three years; public traffic service should be improved for better making traffic control policies; the traffic congestion and environmental problems are alleviated by traffic control policies in the short term, but can't be fundamentally solved in the long run; traffic control policies should cooperate with other traffic demand management policies for reducing demands, and traffic condition should be optimized in both time and space, so that the traffic congestion and environmental problems will be fundamentally solved.