The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in orde...The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in order to provide ultimate wear resistance based on the laser-irradiation-induced inclusion of N_(2) gas during laser powder bed fusion.This is substantialized based on both the thermal diffusion-and chemical reactionbased metallurgy of the Mg_(2)Si–SiC/nitride hybrid composite.This study also proposes a functional platform for systematically modulating a functionally graded structure and modeling build-direction-dependent architectonics during additive manufacturing.This strategy enables the development of a compositional gradient from the center to the edge of each melt pool of the Mg_(2)Si–SiC/nitride hybrid composite.Consequently,the coefficient of friction of the hybrid composite exhibits a 309.3%decrease to–1.67 compared to–0.54 for the conventional nonreinforced Mg_(2)Si structure,while the tensile strength exhibits a 171.3%increase to 831.5 MPa compared to 485.3 MPa for the conventional structure.This outstanding mechanical behavior is due to the(1)the complementary and synergistic reinforcement effects of the SiC and nitride compounds,each of which possesses an intrinsically high hardness,and(2)the strong adhesion of these compounds to the Mg_(2)Si matrix despite their small sizes and low concentrations.展开更多
Bone tissue engineering is an exciting approach to directly repair bone defects or engineer bone tissue for transplantation.Biomaterials play a pivotal role in providing a template and extracellular environment to sup...Bone tissue engineering is an exciting approach to directly repair bone defects or engineer bone tissue for transplantation.Biomaterials play a pivotal role in providing a template and extracellular environment to support regenerative cells and promote tissue regeneration. A variety of signaling cues have been identified to regulate cellular activity, tissue development, and the healing process. Numerous studies and trials have shown the promise of tissue engineering, but successful translations of bone tissue engineering research into clinical applications have been limited, due in part to a lack of optimal delivery systems for these signals. Biomedical engineers are therefore highly motivated to develop biomimetic drug delivery systems, which benefit from mimicking signaling molecule release or presentation by the native extracellular matrix during development or the natural healing process. Engineered biomimetic drug delivery systems aim to provide control over the location, timing, and release kinetics of the signal molecules according to the drug's physiochemical properties and specific biological mechanisms. This article reviews biomimetic strategies in signaling delivery for bone tissue engineering, with a focus on delivery systems rather than specific molecules. Both fundamental considerations and specific design strategies are discussed with examples of recent research progress, demonstrating the significance and potential of biomimetic delivery systems for bone tissue engineering.展开更多
The synthesis of fluorescent nanomaterials has received considerable attention due to the great potential of these materials for a wide range of applications, from chemical sensing through bioimaging to optoelectron- ...The synthesis of fluorescent nanomaterials has received considerable attention due to the great potential of these materials for a wide range of applications, from chemical sensing through bioimaging to optoelectron- ics. Herein, we report a facile and scalable approach to prepare fluorescent carbon dots (FCDs) via a one-pot reaction of citric acid with ethylenediamine at 150 ℃ under ambient air pressure. The resultant FCDs pos- sess an optical bandgap of 3.4 eV and exhibit strong excitation-wavelength-independent blue emission (λEm = 450 nm) under either one- or two-photon excitation. Owing to their low cytotoxicity and long fluorescence lifetime, these FCDs were successfully used as internalized fluorescent probes in human cancer cell lines (HeLa cells) for two-photon excited imaging of cells by fluorescence lifetime imaging microscopy with a high-contrast resolution. They were also homogenously mixed with commercial inks and used to draw fluo- rescent patterns on normal papers and on many other substrates (e.g., certain flexible plastic films, textiles, and clothes). Thus, these nanomaterials are promising for use in solid-state fluorescent sensing, security labeling, and wearable optoelectronics.展开更多
Carbon fiber yarns(CFY) are promising as a new type of flexible building blocks for the construction of flexible architectures for the energy storage applications. The main hurdle with CFY is how to make them high e...Carbon fiber yarns(CFY) are promising as a new type of flexible building blocks for the construction of flexible architectures for the energy storage applications. The main hurdle with CFY is how to make them high energy and power capable by using economically and environmentally viable materials. Here,we report reduced graphene oxide(r GO) and Prussian blue(PB) coated CFY, derived from a facile electrochemical process at room temperature for supercapacitor electrodes. The PB coated CFY and r GO coated CFY electrodes exhibit the excellent gravimetric capacitance of 339 F/g and 160.2 F/g, respectively, in aqueous KCl electrolyte in three-electrode cell configuration. When we coupled these electrodes inside the flexible plastic tube and separated by the electrolyte wet filter paper in order to construct flexible architecture, the resulting device delivers excellent specific energy of 52.1 Wh/kg and 26.5 Wh/kg with offering specific power of 3100 W/kg and 14400 W/kg respectively, under a wide operating potential of1.8 V with excellent rate capability. The device shows high tolerance towards bending, and retained its efficiency to the capacitance after being bent at an angle of 360° for 200 bending cycles.展开更多
Computer simulations were performed to study the dense mixtures of passive particles and active particles in two dimensions.Two systems with different kinds of passive particles(e.g.,spherical particles and rod-like p...Computer simulations were performed to study the dense mixtures of passive particles and active particles in two dimensions.Two systems with different kinds of passive particles(e.g.,spherical particles and rod-like particles)were considered.At small active forces,the high-density and low-density regions emerge in both systems,indicating a phase separation.At higher active forces,the systems return to a homogeneous state with large fluctuation of particle area in contrast with the thermo-equilibrium state.Structurally,the rod-like particles accumulate loosely due to the shape anisotropy compared with the spherical particles at the high-density region.Moreover,there exists a positive correlation between Voronoi area and velocity of the particles.Additionally,a small number of active particles capably give rise to super-diffusion of passive particles in both systems when the self-propelled force is turned on.展开更多
The roles of reaction inhomogeneity in phase separation of polymer mixtures were described and summarized via two examples:photocross-link of polymer mixtures in the bulk state and photopolymerization of monomer in th...The roles of reaction inhomogeneity in phase separation of polymer mixtures were described and summarized via two examples:photocross-link of polymer mixtures in the bulk state and photopolymerization of monomer in the liquid state. The reaction kinetics,the reaction-induced elastic strain and the phase separation kinetics were monitored respectively by UV-Vis spectroscopy,Mach-Zehnder interferometry and laser-scanning confocal microscopy.It was found that phase separation in the bulk state was strongly inf...展开更多
The mechanical properties of unidirectional natural fiber-reinforced composites are generally affected by several processing parameters during compression molding.This study investigates the effects of processing temp...The mechanical properties of unidirectional natural fiber-reinforced composites are generally affected by several processing parameters during compression molding.This study investigates the effects of processing temperature,time,and pressure on the tensile and flexural properties of acrylonitrile butadiene styrene reinforced by banana fibers.X-ray CT imaging was employed to find the relationship between the mechanical properties and structure of the processed composite.Besides,the water absorption of composites was observed and the way in which the mechanical properties evolved after water absorption was analyzed.The tensile and flexural properties of the unidirectional banana fiber-reinforced composite were found to be inversely proportional to the porosity.In addition,high-pressure compression molding might result in cracks and floating fibers that would significantly reduce its mechanical properties.The composite with the highest strength,smallest porosity and lowest water absorption was optimally prepared at T=170℃,t=20 min,and P=100 kg cm^-2.展开更多
Since the discovery of the first carbon-based metal-free electrocatalysts(C-MFECs,i.e.,N-doped carbon nanotubes)for the oxygen reduction reaction in 2009,the field of C-MFECs has grown enormously over the last 10 year...Since the discovery of the first carbon-based metal-free electrocatalysts(C-MFECs,i.e.,N-doped carbon nanotubes)for the oxygen reduction reaction in 2009,the field of C-MFECs has grown enormously over the last 10 years.C-MFECs,as alternatives to nonprecious transition metals and/or precious noble metal-based electrocatalysts,have been consistently demonstrated as efficient catalysts for oxygen reduction,oxygen evolution,hydrogen evolution,carbon dioxide reduction,nitrogen reduction,and many other(electro-)chemical reactions.Recent research and development of C-MFECs have indicated their potential applications in fuel cells,metal-air batteries,and hydrogen generation through water oxidation as well as electrochemical production of various commodity chemicals,such as ammonia,alcohols,hydrogen peroxide,and other useful hydrocarbons.Further research and development of C-MFECs would surely revolutionize traditional energy conversion and storage technologies with minimal environmental impact.In this short review article,we summarize the journey of C-MFECs over the past 10 years with an emphasis on materials development and their structure-property characterization for applications in fuel cells and metal-air batteries.Current challenges and future prospects of this emerging field are also discussed.展开更多
Herein,we report on the effect of a high gravity field on metal-free catalytic reduction,taking the nitrobenzene(NB)reduction and methylene blue(MB)degradation as model reactions in a highgravity rotating tube reactor...Herein,we report on the effect of a high gravity field on metal-free catalytic reduction,taking the nitrobenzene(NB)reduction and methylene blue(MB)degradation as model reactions in a highgravity rotating tube reactor packed with three-dimensional(3D)nitrogen-doped graphene foam(NGF)as a metal-free catalyst.The apparent rate constant(kapp)of the metal-free catalytic reduction of NB in the rotating tube reactor under a high gravity level of 6484g(g=9.81 m s-2)was six times greater than that in a conventional stirred reactor(STR)under gravity.Computational fluid dynamics(CFD)simulations indicated that the improvement of the catalytic efficiency was attributed to the much higher turbulent kinetic energy and faster surface renewal rate in the high-gravity tube reactor in comparison w让h those in a conventional STR.The structure of the 3D metal-free catalysts was stable during the reaction process under a high gravity field,as confirmed by X-ray photoelectron spectroscopy(XPS)and Raman spectra.In the other model reaction,the rate of MB degradation also increased as the high gravity level in creased gradually,which aligns with the result for the NB catalytic reduction system.These results demonstrate the potential to use a high-gravity rotating packed tube reactor for the process intensification of metal-free catalytic reduction reactions.展开更多
Escherichia coli O157:H7 (E. coli O157:H7) is one of the top pathogens of interest for the development of rapid diagnostic systems for food and water samples. The objective of this research is to develop a rapid, nove...Escherichia coli O157:H7 (E. coli O157:H7) is one of the top pathogens of interest for the development of rapid diagnostic systems for food and water samples. The objective of this research is to develop a rapid, novel electrochemical biosensor based on the use of polypropylene microfiber membranes coated with a conductive polypyrrole and antibody functionalized for the biological capture and detection of E. coli O157:H7 inthe field. Using glutaraldehyde, pathogen specific antibodies are covalently attached to conductive microfiber membranes which are then blocked using a 5% bovine serum albumin solution. The functionalized membranes are then exposed to E. coli O157:H7 cells washed in Butterfield’s phosphate buffer and added to a phosphate-buffer electrolyte solution. When a voltage is applied to the system, the presence of the captured pathogen on the fiber surface results in an increase in resistance at the electrotextile electrode surface, indicating a positive result. In this study, the initial resistance of the membrane in the electrochemical system was established and found to range between 5.8 and 13 . The resistance of the system not associated with the electrotextile fibers was calculated to contribute to only 2.8% of the total system resistance, and found not to be significant. A proof of concept experiment was conducted and determined that the electrotextile electrode was able to differentiate between small changes in a solution’s conductivity associated with the presence of E. coli O157:H7 cells over a concentration range of log 0 - 9 CFU/mL.展开更多
Polyamides with chiral environment were obtained from aromatic diamine, 1,3-phenylenediamine (1,3-PDA) or 1,4- phenylenediamine (1,4-PDA), and N-α-benzoyl-L-glutamic acid (Benzoyl-L-Glu). The optical rotation ([α]D)...Polyamides with chiral environment were obtained from aromatic diamine, 1,3-phenylenediamine (1,3-PDA) or 1,4- phenylenediamine (1,4-PDA), and N-α-benzoyl-L-glutamic acid (Benzoyl-L-Glu). The optical rotation ([α]D) for 1,3- PDA-Benzoyl-L-Glu was determined to be 3.7 deg cm2 g–1, while that for 1,4-PDA-Benzoyl-L-Glu to be 9.7 deg cm2 g–1. 1,3-PDA-Benzoyl-L-Glu showed adsorption selectivity toward D-Glu and its adsorption selectivity was determined to be 1.68. Contrary to this, 1,4-PDA-Benzoyl-L-Glu showed adsorption selectivity toward L-Glu and the adsorption selectivity toward L-Glu was determined to be 1.33. From those results, those two types of chiral polyamide are expected to applicable to chiral separation or chiral recognition.展开更多
A molecularly imprinted polymer (MIP) was formed using an inorganic polymer by a sol-gel process. The monomers which were used to synthesize the inorganic polymer were tetraethoxysilane (TEOS), triethoxymethylsilane (...A molecularly imprinted polymer (MIP) was formed using an inorganic polymer by a sol-gel process. The monomers which were used to synthesize the inorganic polymer were tetraethoxysilane (TEOS), triethoxymethylsilane (MTES), and triethoxyphenylsilane (PTES). Caffeine was chosen as a template for the molecular imprinting, and theophylline was chosen as the analogous counterpart compound. The discriminating ability of the synthesized MIP to these two-compounds was estimated in this study. The MIP showed the highest discriminating ability when the ratio of TEOS:MTES: PTES in the synthesis of the inorganic polymer was 1:1:3, the reaction temperature was 50?C, and the pH of the reaction system was ~6.5.展开更多
Scaffolds play a crucial role in tissue engineering. Biodegradable polymers with great processing flexibility are the predominant scaffolding materials. Synthetic biodegradable polymers with well-defined structure and...Scaffolds play a crucial role in tissue engineering. Biodegradable polymers with great processing flexibility are the predominant scaffolding materials. Synthetic biodegradable polymers with well-defined structure and without immunological concerns associated with naturally derived polymers are widely used in tissue engineering. The synthetic biodegradable polymers that are widely used in tissue engineering, including polyesters, polyanhydrides, polyphosphazenes, polyurethane, and poly(glycerol sebacate) are summarized in this article. New developments in conducting polymers, photoresponsive polymers, amino-acid-based polymers, enzymatically degradable polymers, and peptide-activated polymers are also discussed. In addition to chemical functionalization, the scaffold designs that mimic the nano and micro features of the extracellular matrix(ECM) are presented as well, and composite and nanocomposite scaffolds are also reviewed.展开更多
Strain sensors for human health monitoring are of paramount importance in wearable medical diagnostics and personal health monitoring.Despite extensive studies,strain sensors with both high durability and stretchabili...Strain sensors for human health monitoring are of paramount importance in wearable medical diagnostics and personal health monitoring.Despite extensive studies,strain sensors with both high durability and stretchability are still desired,particularly with the stability for different environmental conditions.Here,we report a series of strain sensors possessing the graphene network with a high density of intermittent physical interconnections,which produces the relative resistance change by varying the overlap area between the neighboring graphene sheets under stretching and releasing,analogous to the slide rheostat working in electronics.Our in-situ transmission electron microscope observation reveals the full recoverability of the structure from large deformation upon unloading for ensuring the exceptional cycle stability of our material on monitoring full-range body movements.The stable response is also demonstrated over wide temperature range and frequency range,because the peculiar dynamic structure can be maintained through the self-adjustment to the thermal expansion of the bulk material.Based on the working mechanism of graphene“slide rheostat,”the sensing properties of the strain sensor are tailored by tuning the graphene network structure with different mass densities using different concentrations of graphene oxide dispersion,while the stretchability and sensitivity can be separately optimized for different application requirements.展开更多
In this study, it is attempted to give an insight into the injection processability of three self-prepared polymers from A to Z. This work presents material analysis, injection molding simulation, design of ex- perime...In this study, it is attempted to give an insight into the injection processability of three self-prepared polymers from A to Z. This work presents material analysis, injection molding simulation, design of ex- periments alongside considering all interaction effects of controlling parameters carefully for green biodegradable polymeric systems, including polylactic acid (PLA), polylactic acid-thermoplastic poly- urethane (PLA-TPU) and polylactic acid-thermoplastic starch (PLA-TPS). The experiments were carried out using injection molding simulation software Autodesk Moldflov~~ in order to minimize warpage and volumetric shrinkage for each of the mentioned systems. The analysis was conducted by changing five significant processing parameters, including coolant temperature, packing time, packing pressure, mold temperature and melt temperature. Taguchi's [.27 (35) orthogonal array was selected as an efficient method for design of simulations in order to consider the interaction effects of the parameters and reduce spu- rious simulations. Meanwhile, artificial neural network (ANN) was also used for pattern recognition and optimization through modifying the processing conditions. The Taguchi coupled analysis of variance (ANOVA) and ANN analysis resulted in definition of optimum levels for each factor by two completely different methods. According to the results, melting temperature, coolant temperature and packing time had significant influence on the shrinkage and warpage. The ANN optimal level selection for minimiza- tion of shrinkage and/or warpage is in good agreement with ANOVA optimal level selection results. This investigation indicates that PLA-TPU compound exhibits the highest resistance to warpage and shrink- age defects compared to the other studied compounds.展开更多
Five novel near-infrared electrochromic aromatic polyimides (PIs) with pendent benzimidazole group were synthesized from 4,4'-diamino-4"-(1-benzylbenzimidazol-2-yl)triphenylamine (named as DBBT) with five diff...Five novel near-infrared electrochromic aromatic polyimides (PIs) with pendent benzimidazole group were synthesized from 4,4'-diamino-4"-(1-benzylbenzimidazol-2-yl)triphenylamine (named as DBBT) with five different dianhydrides via two-step polymerization process, respectively. The maximum UV-Vis absorption bands of these PIs locate at about 335 nm for solid films due to the π-π* transitions. A reversible pair of distinct redox peaks, that were associated with a noticeable color change from original yellow to blue, was observed in the cyclic voltammetry (CV) test. A new absorption peak emerged at 847 nm in near-infrared (NIR) region with increasing voltage in UV-Vis-NIR spectrum, which indicates that PI can be used as NIR electrochromic material. These novel PIs have good electrochemical stability, appropriate energy levels for the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), in the range of-5.17 eV to -5.20 eV and -2.14 eV to -2.26 eV (versus the vacuum level) determined by cyclic voltammetry method. These values basically consisted with the results of quantum chemical calculation. These polyimides can be used as novel electrochromic and hole transportation materials.展开更多
Phosphorus has recently received extensive attention as a promising anode for lithium ion batteries (LIBs) due to its high theoretical capacity of 2,596 mAh·g^-1. To develop high-performance phosphorus anodes f...Phosphorus has recently received extensive attention as a promising anode for lithium ion batteries (LIBs) due to its high theoretical capacity of 2,596 mAh·g^-1. To develop high-performance phosphorus anodes for LIBs, carbon materials have been hybridized with phosphorus (P-C) to improve dispersion and con- ductivity. However, the specific capacity, rate capability, and cycling stability of P-C anodes are still less than satisfactory for practical applications. Furthermore, the exact effects of the carbon support on the electrochemical performance of the P-C anodes are not fully understood. Herein, a series of xP-yC anode materials for LIBs were prepared by a simple and efficient ball-milling method. 6P-4C and 3P-7C were found to be optimum mass ratios of x/y, and delivered initial discharge capacities of 1,803.5 and 1,585.3-mAh·g^-1, respectively, at 0.1 C in the voltage range 0.02-2 V, with an initial capacity retention of 68.3% over 200 cycles (more than 4 months cycling life) and 40.8% over 450 cycles. The excellent electrochemical performance of the 6P-4C and 3P-7C samples was attributed to a synergistic effect from both the adsorbed P and carbon.展开更多
In this study,we developed a novel confinement-synthesis approach to layered double hydroxide nanodots(LDH-NDs)anchored on carbon nanoparticles,which formed a three-dimensional(3D)interconnected network within a porou...In this study,we developed a novel confinement-synthesis approach to layered double hydroxide nanodots(LDH-NDs)anchored on carbon nanoparticles,which formed a three-dimensional(3D)interconnected network within a porous carbon support derived from pyrolysis of metal-organic frameworks(C-MOF).The resultant LDH-NDs@C-MOF nonprecious metal catalysts were demonstrated to exhibit super-high catalytic performance for oxygen evolution reaction(OER)with excellent operation stability and low overpotential(-230 mV)at an exchange current density of 10 mA·cm^(-2).The observed overpotential for the LDH-NDs@C-MOF is much lower than that of large-sized LDH nanosheets(321 mV),pure carbonized MOF(411 mV),and even commercial RuO_(2)(281 mV).X-ray absorption measurements and density functional theory(DFT)calculations revealed partial charge transfer from Fe^(3+)through an O bridge to Ni^(2+)at the edge of LDH-NDs supported by C-MOF to produce the optimal binding energies for OER intermediates.This,coupled with a large number of exposed active sides and efficient charge and electrolyte/reactant/product transports associated with the porous 3D C-MOF support,significantly boosted the OER performance of the LDH-ND catalyst with respect to its nanosheet counterpart.Apart from the fact that this is the first active side identification for LDH-ND OER catalysts,this work provides a general strategy to enhance activities of nanosheet catalysts by converting them into edge-rich nanodots to be supported by 3D porous carbon architectures.展开更多
Cytotoxicity and genotoxicity of plasma-modified multi-walled carbon nanotubes (MWCNTs), including hydroxyl-MWCNTs (MWCNT-OH), carboxyl-MWCNTs (MWCNT-COOH) and pristine MWCNTs, with human ocular cells (e.g. retinal pi...Cytotoxicity and genotoxicity of plasma-modified multi-walled carbon nanotubes (MWCNTs), including hydroxyl-MWCNTs (MWCNT-OH), carboxyl-MWCNTs (MWCNT-COOH) and pristine MWCNTs, with human ocular cells (e.g. retinal pigment epithelium (RPE) cells) have been studied in this work. The addition of MWCNT-based materials caused few change in cell morphology while the presence of MWCNTs was observed inside the cells using transmission electron microscopy (TEM), suggesting possibility of MWCNTs passing through the cell membranes without damaging cells. Cell viability measurements suggested that MWCNT-COOH exhibited better biocompatibility than other MWCNT materials studied in this work. Lactate Dehydrogenase (LDH) release level was found to be less than 30% with all types of MWCNT-based materials. Reactive Oxygen Species (ROS) generation was visible but not severe with addition of nanotubes. A smaller oxidative stress level was obtained from MWCNT-COOH. Cell apoptosis was found to be less than 1.5% with addition of MWCNT-based materials. Particularly MWCNTs were found to be swallowed by cells and released by cells after 72 h without damaging cells, which may be considered as a potential vector for ocular genetic diseases. Plasma modification of MWCNTs particularly with-COOH was found to be an efficient way to improve ocular biocompatibility of MWCNTs, suggesting a fast and useful way to modify MWCNTs for applications in areas such as biology and biomedicine.展开更多
Highly ordered Tb_(x)Fe_(7)Co_(3)(x=0,0.6,0.8)nanowires were synthesized in alumina templates by electrochemical deposition method.Here,the effects of Tb content and annealing treatment on the phase composition,morpho...Highly ordered Tb_(x)Fe_(7)Co_(3)(x=0,0.6,0.8)nanowires were synthesized in alumina templates by electrochemical deposition method.Here,the effects of Tb content and annealing treatment on the phase composition,morphology,crystalline structure and magnetic properties were investigated.The asdeposited Tb_0 Fe_(7)Co_(3)nanowires comprise Fe_(7)Co_(3)phase.While after adding Tb,the diffraction peaks slightly shift left,indicating the infiltration of Tb atoms into Fe_(7)Co_(3)phase.After annealing,Tb_0 Fe_(7)Co_(3)nanowires still consist of Fe_(7)Co_(3)phase with a slight enhancement on coercivity.While the annealed nanowires with Tb doped present a complex phase composition containing Fe3 Tb,Fe_(2)Tb,Co_(3)Tb,Co_(17)Tb_(2),TbFeO_(3)and Fe_(2)O_(3)phases distribute in the central portion,and Co_(0.72)Fe_(0.28)at the nanowire outer walls.The annealed Tb_(x)Fe_(7)Co_(3)(x=0.6,0.8)nanowires show higher magnetic performance owing to the formation of hard magnetic phases,the interfacial elastic coupling between hard and soft phases and the coherent Fe3 Tb/Co_(3)Tb interface which restrain the domain wall motion.To be specific,the coercivity and remanence ratio of TbxFe_(7)Co_(3)(x=0.6,0.8)nanowires significantly enhance with increasing Tb content.展开更多
基金supported by the Learning & Academic Research Institution for Master’s and Ph.D. Students and Postdocs (LAMP) Program of the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (No. RS-2023-00285353)supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (NRF-2021R1A2C3006662, NRF-2022R1A5A1030054, and 2021R1A2C1091301)+3 种基金the support from Natural Sciences and Engineering Research Council of Canada (NSERC)Canada Foundation for Innovation (CFI)Atlantic Canada Opportunities Agency (ACOA)the New Brunswick Innovation Foundation (NBIF)
文摘The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in order to provide ultimate wear resistance based on the laser-irradiation-induced inclusion of N_(2) gas during laser powder bed fusion.This is substantialized based on both the thermal diffusion-and chemical reactionbased metallurgy of the Mg_(2)Si–SiC/nitride hybrid composite.This study also proposes a functional platform for systematically modulating a functionally graded structure and modeling build-direction-dependent architectonics during additive manufacturing.This strategy enables the development of a compositional gradient from the center to the edge of each melt pool of the Mg_(2)Si–SiC/nitride hybrid composite.Consequently,the coefficient of friction of the hybrid composite exhibits a 309.3%decrease to–1.67 compared to–0.54 for the conventional nonreinforced Mg_(2)Si structure,while the tensile strength exhibits a 171.3%increase to 831.5 MPa compared to 485.3 MPa for the conventional structure.This outstanding mechanical behavior is due to the(1)the complementary and synergistic reinforcement effects of the SiC and nitride compounds,each of which possesses an intrinsically high hardness,and(2)the strong adhesion of these compounds to the Mg_(2)Si matrix despite their small sizes and low concentrations.
基金supported by the US DOD(W81XWH-12-2-0008)the National Institutes of Health(DE022327,HL136231,TR001711)the National Natural Science Foundation of China(Grant No.31470915)
文摘Bone tissue engineering is an exciting approach to directly repair bone defects or engineer bone tissue for transplantation.Biomaterials play a pivotal role in providing a template and extracellular environment to support regenerative cells and promote tissue regeneration. A variety of signaling cues have been identified to regulate cellular activity, tissue development, and the healing process. Numerous studies and trials have shown the promise of tissue engineering, but successful translations of bone tissue engineering research into clinical applications have been limited, due in part to a lack of optimal delivery systems for these signals. Biomedical engineers are therefore highly motivated to develop biomimetic drug delivery systems, which benefit from mimicking signaling molecule release or presentation by the native extracellular matrix during development or the natural healing process. Engineered biomimetic drug delivery systems aim to provide control over the location, timing, and release kinetics of the signal molecules according to the drug's physiochemical properties and specific biological mechanisms. This article reviews biomimetic strategies in signaling delivery for bone tissue engineering, with a focus on delivery systems rather than specific molecules. Both fundamental considerations and specific design strategies are discussed with examples of recent research progress, demonstrating the significance and potential of biomimetic delivery systems for bone tissue engineering.
文摘The synthesis of fluorescent nanomaterials has received considerable attention due to the great potential of these materials for a wide range of applications, from chemical sensing through bioimaging to optoelectron- ics. Herein, we report a facile and scalable approach to prepare fluorescent carbon dots (FCDs) via a one-pot reaction of citric acid with ethylenediamine at 150 ℃ under ambient air pressure. The resultant FCDs pos- sess an optical bandgap of 3.4 eV and exhibit strong excitation-wavelength-independent blue emission (λEm = 450 nm) under either one- or two-photon excitation. Owing to their low cytotoxicity and long fluorescence lifetime, these FCDs were successfully used as internalized fluorescent probes in human cancer cell lines (HeLa cells) for two-photon excited imaging of cells by fluorescence lifetime imaging microscopy with a high-contrast resolution. They were also homogenously mixed with commercial inks and used to draw fluo- rescent patterns on normal papers and on many other substrates (e.g., certain flexible plastic films, textiles, and clothes). Thus, these nanomaterials are promising for use in solid-state fluorescent sensing, security labeling, and wearable optoelectronics.
基金CNPq, Govt. of Brazil for providing financial support under the scheme of Science without Border to carry out this research work
文摘Carbon fiber yarns(CFY) are promising as a new type of flexible building blocks for the construction of flexible architectures for the energy storage applications. The main hurdle with CFY is how to make them high energy and power capable by using economically and environmentally viable materials. Here,we report reduced graphene oxide(r GO) and Prussian blue(PB) coated CFY, derived from a facile electrochemical process at room temperature for supercapacitor electrodes. The PB coated CFY and r GO coated CFY electrodes exhibit the excellent gravimetric capacitance of 339 F/g and 160.2 F/g, respectively, in aqueous KCl electrolyte in three-electrode cell configuration. When we coupled these electrodes inside the flexible plastic tube and separated by the electrolyte wet filter paper in order to construct flexible architecture, the resulting device delivers excellent specific energy of 52.1 Wh/kg and 26.5 Wh/kg with offering specific power of 3100 W/kg and 14400 W/kg respectively, under a wide operating potential of1.8 V with excellent rate capability. The device shows high tolerance towards bending, and retained its efficiency to the capacitance after being bent at an angle of 360° for 200 bending cycles.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21674078,21474074,21574096,21774091,and 21374073)Overseas Research Program of Jiangsu,China(2019).
文摘Computer simulations were performed to study the dense mixtures of passive particles and active particles in two dimensions.Two systems with different kinds of passive particles(e.g.,spherical particles and rod-like particles)were considered.At small active forces,the high-density and low-density regions emerge in both systems,indicating a phase separation.At higher active forces,the systems return to a homogeneous state with large fluctuation of particle area in contrast with the thermo-equilibrium state.Structurally,the rod-like particles accumulate loosely due to the shape anisotropy compared with the spherical particles at the high-density region.Moreover,there exists a positive correlation between Voronoi area and velocity of the particles.Additionally,a small number of active particles capably give rise to super-diffusion of passive particles in both systems when the self-propelled force is turned on.
基金supported by the Ministry of Education (MONKASHO),Japan through the Grant-in-Aid on the Priority-Research-Area"Molecular Nanodynamics"and"Soft Matter Physics".The Grant-in-Aid for Scientific Research (No.20350107) is also gratefully acknowledged.
文摘The roles of reaction inhomogeneity in phase separation of polymer mixtures were described and summarized via two examples:photocross-link of polymer mixtures in the bulk state and photopolymerization of monomer in the liquid state. The reaction kinetics,the reaction-induced elastic strain and the phase separation kinetics were monitored respectively by UV-Vis spectroscopy,Mach-Zehnder interferometry and laser-scanning confocal microscopy.It was found that phase separation in the bulk state was strongly inf...
文摘The mechanical properties of unidirectional natural fiber-reinforced composites are generally affected by several processing parameters during compression molding.This study investigates the effects of processing temperature,time,and pressure on the tensile and flexural properties of acrylonitrile butadiene styrene reinforced by banana fibers.X-ray CT imaging was employed to find the relationship between the mechanical properties and structure of the processed composite.Besides,the water absorption of composites was observed and the way in which the mechanical properties evolved after water absorption was analyzed.The tensile and flexural properties of the unidirectional banana fiber-reinforced composite were found to be inversely proportional to the porosity.In addition,high-pressure compression molding might result in cracks and floating fibers that would significantly reduce its mechanical properties.The composite with the highest strength,smallest porosity and lowest water absorption was optimally prepared at T=170℃,t=20 min,and P=100 kg cm^-2.
基金The authors thank our colleagues for their contributions to the work cited.This study was partially supported by the ARC DP190103881,US Air Force Research Laboratory(AFRL),UNSW,and CWRU.
文摘Since the discovery of the first carbon-based metal-free electrocatalysts(C-MFECs,i.e.,N-doped carbon nanotubes)for the oxygen reduction reaction in 2009,the field of C-MFECs has grown enormously over the last 10 years.C-MFECs,as alternatives to nonprecious transition metals and/or precious noble metal-based electrocatalysts,have been consistently demonstrated as efficient catalysts for oxygen reduction,oxygen evolution,hydrogen evolution,carbon dioxide reduction,nitrogen reduction,and many other(electro-)chemical reactions.Recent research and development of C-MFECs have indicated their potential applications in fuel cells,metal-air batteries,and hydrogen generation through water oxidation as well as electrochemical production of various commodity chemicals,such as ammonia,alcohols,hydrogen peroxide,and other useful hydrocarbons.Further research and development of C-MFECs would surely revolutionize traditional energy conversion and storage technologies with minimal environmental impact.In this short review article,we summarize the journey of C-MFECs over the past 10 years with an emphasis on materials development and their structure-property characterization for applications in fuel cells and metal-air batteries.Current challenges and future prospects of this emerging field are also discussed.
基金We are grateful for financial support from National Natural Science Foundation of China(21620102007)the Fundamental Research Funds for the Central Universities of China(JD2002).
文摘Herein,we report on the effect of a high gravity field on metal-free catalytic reduction,taking the nitrobenzene(NB)reduction and methylene blue(MB)degradation as model reactions in a highgravity rotating tube reactor packed with three-dimensional(3D)nitrogen-doped graphene foam(NGF)as a metal-free catalyst.The apparent rate constant(kapp)of the metal-free catalytic reduction of NB in the rotating tube reactor under a high gravity level of 6484g(g=9.81 m s-2)was six times greater than that in a conventional stirred reactor(STR)under gravity.Computational fluid dynamics(CFD)simulations indicated that the improvement of the catalytic efficiency was attributed to the much higher turbulent kinetic energy and faster surface renewal rate in the high-gravity tube reactor in comparison w让h those in a conventional STR.The structure of the 3D metal-free catalysts was stable during the reaction process under a high gravity field,as confirmed by X-ray photoelectron spectroscopy(XPS)and Raman spectra.In the other model reaction,the rate of MB degradation also increased as the high gravity level in creased gradually,which aligns with the result for the NB catalytic reduction system.These results demonstrate the potential to use a high-gravity rotating packed tube reactor for the process intensification of metal-free catalytic reduction reactions.
文摘Escherichia coli O157:H7 (E. coli O157:H7) is one of the top pathogens of interest for the development of rapid diagnostic systems for food and water samples. The objective of this research is to develop a rapid, novel electrochemical biosensor based on the use of polypropylene microfiber membranes coated with a conductive polypyrrole and antibody functionalized for the biological capture and detection of E. coli O157:H7 inthe field. Using glutaraldehyde, pathogen specific antibodies are covalently attached to conductive microfiber membranes which are then blocked using a 5% bovine serum albumin solution. The functionalized membranes are then exposed to E. coli O157:H7 cells washed in Butterfield’s phosphate buffer and added to a phosphate-buffer electrolyte solution. When a voltage is applied to the system, the presence of the captured pathogen on the fiber surface results in an increase in resistance at the electrotextile electrode surface, indicating a positive result. In this study, the initial resistance of the membrane in the electrochemical system was established and found to range between 5.8 and 13 . The resistance of the system not associated with the electrotextile fibers was calculated to contribute to only 2.8% of the total system resistance, and found not to be significant. A proof of concept experiment was conducted and determined that the electrotextile electrode was able to differentiate between small changes in a solution’s conductivity associated with the presence of E. coli O157:H7 cells over a concentration range of log 0 - 9 CFU/mL.
文摘Polyamides with chiral environment were obtained from aromatic diamine, 1,3-phenylenediamine (1,3-PDA) or 1,4- phenylenediamine (1,4-PDA), and N-α-benzoyl-L-glutamic acid (Benzoyl-L-Glu). The optical rotation ([α]D) for 1,3- PDA-Benzoyl-L-Glu was determined to be 3.7 deg cm2 g–1, while that for 1,4-PDA-Benzoyl-L-Glu to be 9.7 deg cm2 g–1. 1,3-PDA-Benzoyl-L-Glu showed adsorption selectivity toward D-Glu and its adsorption selectivity was determined to be 1.68. Contrary to this, 1,4-PDA-Benzoyl-L-Glu showed adsorption selectivity toward L-Glu and the adsorption selectivity toward L-Glu was determined to be 1.33. From those results, those two types of chiral polyamide are expected to applicable to chiral separation or chiral recognition.
文摘A molecularly imprinted polymer (MIP) was formed using an inorganic polymer by a sol-gel process. The monomers which were used to synthesize the inorganic polymer were tetraethoxysilane (TEOS), triethoxymethylsilane (MTES), and triethoxyphenylsilane (PTES). Caffeine was chosen as a template for the molecular imprinting, and theophylline was chosen as the analogous counterpart compound. The discriminating ability of the synthesized MIP to these two-compounds was estimated in this study. The MIP showed the highest discriminating ability when the ratio of TEOS:MTES: PTES in the synthesis of the inorganic polymer was 1:1:3, the reaction temperature was 50?C, and the pH of the reaction system was ~6.5.
基金the financial support of the US National Institutes of Health(NIDCR DE015384,DE017689,DE022327)DOD(W81XWH-12-2-0008)+1 种基金the National Science Foundation of the United States(DMR-1206575)the National Natural Science Foundation of China(21304073)
文摘Scaffolds play a crucial role in tissue engineering. Biodegradable polymers with great processing flexibility are the predominant scaffolding materials. Synthetic biodegradable polymers with well-defined structure and without immunological concerns associated with naturally derived polymers are widely used in tissue engineering. The synthetic biodegradable polymers that are widely used in tissue engineering, including polyesters, polyanhydrides, polyphosphazenes, polyurethane, and poly(glycerol sebacate) are summarized in this article. New developments in conducting polymers, photoresponsive polymers, amino-acid-based polymers, enzymatically degradable polymers, and peptide-activated polymers are also discussed. In addition to chemical functionalization, the scaffold designs that mimic the nano and micro features of the extracellular matrix(ECM) are presented as well, and composite and nanocomposite scaffolds are also reviewed.
基金support from the National Natural Science Foundation of China(Grant No.51572095)Applied Basic Research Programs of Wuhan City(Grant No.2018010401011282)Natural Science Foundation of Hubei Province,China(Grant No.2018CFA049).
文摘Strain sensors for human health monitoring are of paramount importance in wearable medical diagnostics and personal health monitoring.Despite extensive studies,strain sensors with both high durability and stretchability are still desired,particularly with the stability for different environmental conditions.Here,we report a series of strain sensors possessing the graphene network with a high density of intermittent physical interconnections,which produces the relative resistance change by varying the overlap area between the neighboring graphene sheets under stretching and releasing,analogous to the slide rheostat working in electronics.Our in-situ transmission electron microscope observation reveals the full recoverability of the structure from large deformation upon unloading for ensuring the exceptional cycle stability of our material on monitoring full-range body movements.The stable response is also demonstrated over wide temperature range and frequency range,because the peculiar dynamic structure can be maintained through the self-adjustment to the thermal expansion of the bulk material.Based on the working mechanism of graphene“slide rheostat,”the sensing properties of the strain sensor are tailored by tuning the graphene network structure with different mass densities using different concentrations of graphene oxide dispersion,while the stretchability and sensitivity can be separately optimized for different application requirements.
文摘In this study, it is attempted to give an insight into the injection processability of three self-prepared polymers from A to Z. This work presents material analysis, injection molding simulation, design of ex- periments alongside considering all interaction effects of controlling parameters carefully for green biodegradable polymeric systems, including polylactic acid (PLA), polylactic acid-thermoplastic poly- urethane (PLA-TPU) and polylactic acid-thermoplastic starch (PLA-TPS). The experiments were carried out using injection molding simulation software Autodesk Moldflov~~ in order to minimize warpage and volumetric shrinkage for each of the mentioned systems. The analysis was conducted by changing five significant processing parameters, including coolant temperature, packing time, packing pressure, mold temperature and melt temperature. Taguchi's [.27 (35) orthogonal array was selected as an efficient method for design of simulations in order to consider the interaction effects of the parameters and reduce spu- rious simulations. Meanwhile, artificial neural network (ANN) was also used for pattern recognition and optimization through modifying the processing conditions. The Taguchi coupled analysis of variance (ANOVA) and ANN analysis resulted in definition of optimum levels for each factor by two completely different methods. According to the results, melting temperature, coolant temperature and packing time had significant influence on the shrinkage and warpage. The ANN optimal level selection for minimiza- tion of shrinkage and/or warpage is in good agreement with ANOVA optimal level selection results. This investigation indicates that PLA-TPU compound exhibits the highest resistance to warpage and shrink- age defects compared to the other studied compounds.
基金financially supported by the National Natural Science Foundation of China(Nos.51373049,51372055,21372067,21206034,51303045 and 51473046)Doctoral Fund of Ministry of Education of China(Nos.20132301120004 and 20132301110001)Reserve Talented Person of Harbin(No.2015RAXXJ015)
文摘Five novel near-infrared electrochromic aromatic polyimides (PIs) with pendent benzimidazole group were synthesized from 4,4'-diamino-4"-(1-benzylbenzimidazol-2-yl)triphenylamine (named as DBBT) with five different dianhydrides via two-step polymerization process, respectively. The maximum UV-Vis absorption bands of these PIs locate at about 335 nm for solid films due to the π-π* transitions. A reversible pair of distinct redox peaks, that were associated with a noticeable color change from original yellow to blue, was observed in the cyclic voltammetry (CV) test. A new absorption peak emerged at 847 nm in near-infrared (NIR) region with increasing voltage in UV-Vis-NIR spectrum, which indicates that PI can be used as NIR electrochromic material. These novel PIs have good electrochemical stability, appropriate energy levels for the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), in the range of-5.17 eV to -5.20 eV and -2.14 eV to -2.26 eV (versus the vacuum level) determined by cyclic voltammetry method. These values basically consisted with the results of quantum chemical calculation. These polyimides can be used as novel electrochromic and hole transportation materials.
基金Acknowledgements The authors are grateful for financial support from the Gobal Challenge Program grant (University of wollongong), Australia Auto CRC 2020, Creative Research Initiative (NRF), and National Science Foundation (No. NSF-CMMI-1400274). The autors also want to thank Ms. Donghua Han, and Mr. Boyang Ruan for their great help.
文摘Phosphorus has recently received extensive attention as a promising anode for lithium ion batteries (LIBs) due to its high theoretical capacity of 2,596 mAh·g^-1. To develop high-performance phosphorus anodes for LIBs, carbon materials have been hybridized with phosphorus (P-C) to improve dispersion and con- ductivity. However, the specific capacity, rate capability, and cycling stability of P-C anodes are still less than satisfactory for practical applications. Furthermore, the exact effects of the carbon support on the electrochemical performance of the P-C anodes are not fully understood. Herein, a series of xP-yC anode materials for LIBs were prepared by a simple and efficient ball-milling method. 6P-4C and 3P-7C were found to be optimum mass ratios of x/y, and delivered initial discharge capacities of 1,803.5 and 1,585.3-mAh·g^-1, respectively, at 0.1 C in the voltage range 0.02-2 V, with an initial capacity retention of 68.3% over 200 cycles (more than 4 months cycling life) and 40.8% over 450 cycles. The excellent electrochemical performance of the 6P-4C and 3P-7C samples was attributed to a synergistic effect from both the adsorbed P and carbon.
基金supported by The ARC(Nos.DP190103881 and FL190100126).
文摘In this study,we developed a novel confinement-synthesis approach to layered double hydroxide nanodots(LDH-NDs)anchored on carbon nanoparticles,which formed a three-dimensional(3D)interconnected network within a porous carbon support derived from pyrolysis of metal-organic frameworks(C-MOF).The resultant LDH-NDs@C-MOF nonprecious metal catalysts were demonstrated to exhibit super-high catalytic performance for oxygen evolution reaction(OER)with excellent operation stability and low overpotential(-230 mV)at an exchange current density of 10 mA·cm^(-2).The observed overpotential for the LDH-NDs@C-MOF is much lower than that of large-sized LDH nanosheets(321 mV),pure carbonized MOF(411 mV),and even commercial RuO_(2)(281 mV).X-ray absorption measurements and density functional theory(DFT)calculations revealed partial charge transfer from Fe^(3+)through an O bridge to Ni^(2+)at the edge of LDH-NDs supported by C-MOF to produce the optimal binding energies for OER intermediates.This,coupled with a large number of exposed active sides and efficient charge and electrolyte/reactant/product transports associated with the porous 3D C-MOF support,significantly boosted the OER performance of the LDH-ND catalyst with respect to its nanosheet counterpart.Apart from the fact that this is the first active side identification for LDH-ND OER catalysts,this work provides a general strategy to enhance activities of nanosheet catalysts by converting them into edge-rich nanodots to be supported by 3D porous carbon architectures.
基金supported by the National Natural Science Foundation of China (81000663)Key International Cooperation Project of the Ministry of Science and Technology of China(2009DFB30380)+4 种基金Research Fund for the Doctoral Program of Higher Education of China (20103321120003)Key Project for Science and Technology Research of Ministry of Education of China (211069)the Scientific Research Foundation for the Returned Overseas Chinese Scholarsthe Innovation Team of Ministry of Education of China (IRT1077)the National "Thousand Talents Program"
文摘Cytotoxicity and genotoxicity of plasma-modified multi-walled carbon nanotubes (MWCNTs), including hydroxyl-MWCNTs (MWCNT-OH), carboxyl-MWCNTs (MWCNT-COOH) and pristine MWCNTs, with human ocular cells (e.g. retinal pigment epithelium (RPE) cells) have been studied in this work. The addition of MWCNT-based materials caused few change in cell morphology while the presence of MWCNTs was observed inside the cells using transmission electron microscopy (TEM), suggesting possibility of MWCNTs passing through the cell membranes without damaging cells. Cell viability measurements suggested that MWCNT-COOH exhibited better biocompatibility than other MWCNT materials studied in this work. Lactate Dehydrogenase (LDH) release level was found to be less than 30% with all types of MWCNT-based materials. Reactive Oxygen Species (ROS) generation was visible but not severe with addition of nanotubes. A smaller oxidative stress level was obtained from MWCNT-COOH. Cell apoptosis was found to be less than 1.5% with addition of MWCNT-based materials. Particularly MWCNTs were found to be swallowed by cells and released by cells after 72 h without damaging cells, which may be considered as a potential vector for ocular genetic diseases. Plasma modification of MWCNTs particularly with-COOH was found to be an efficient way to improve ocular biocompatibility of MWCNTs, suggesting a fast and useful way to modify MWCNTs for applications in areas such as biology and biomedicine.
基金Project supported by National Natural Science Foundation of China(51271070,51871087)the Natural Science Foundation of Hebei Province(E2016202406)。
文摘Highly ordered Tb_(x)Fe_(7)Co_(3)(x=0,0.6,0.8)nanowires were synthesized in alumina templates by electrochemical deposition method.Here,the effects of Tb content and annealing treatment on the phase composition,morphology,crystalline structure and magnetic properties were investigated.The asdeposited Tb_0 Fe_(7)Co_(3)nanowires comprise Fe_(7)Co_(3)phase.While after adding Tb,the diffraction peaks slightly shift left,indicating the infiltration of Tb atoms into Fe_(7)Co_(3)phase.After annealing,Tb_0 Fe_(7)Co_(3)nanowires still consist of Fe_(7)Co_(3)phase with a slight enhancement on coercivity.While the annealed nanowires with Tb doped present a complex phase composition containing Fe3 Tb,Fe_(2)Tb,Co_(3)Tb,Co_(17)Tb_(2),TbFeO_(3)and Fe_(2)O_(3)phases distribute in the central portion,and Co_(0.72)Fe_(0.28)at the nanowire outer walls.The annealed Tb_(x)Fe_(7)Co_(3)(x=0.6,0.8)nanowires show higher magnetic performance owing to the formation of hard magnetic phases,the interfacial elastic coupling between hard and soft phases and the coherent Fe3 Tb/Co_(3)Tb interface which restrain the domain wall motion.To be specific,the coercivity and remanence ratio of TbxFe_(7)Co_(3)(x=0.6,0.8)nanowires significantly enhance with increasing Tb content.