Stress state of microalgal cells is caused under unfavorable conditions such as disordered light regime and depleted nitrogen. The stress state can impair photosynthetic efficiency, inhibit cell growth and result in t...Stress state of microalgal cells is caused under unfavorable conditions such as disordered light regime and depleted nitrogen. The stress state can impair photosynthetic efficiency, inhibit cell growth and result in the accumulation of triacylglycerol(TAG) from protective mechanisms. Continuous light or nitrogen starvation was applied on microalgae and performed effectively on inducing TAG production. To evaluate the light regime effect on inducing TAG production, the effect of different light regimes on nitrogen-starved Isochrysis zhangjiangensis was investigated in this work. The continuous light and nitrogen starvation elevated TAG content of biomass by 73% and 193%, respectively. Furthermore, the TAG accumulation of I. zhangjiangensis cell under nitrogen starvation decreased under aggravated stress from continuous illumination. Our results demonstrated that culturing the cells with 14 L: 10 D light regime under nitrogen starvation is the optimal mode to achieve maximal accumulation of TAG. A recovery in light regime was necessary for I. zhangjiangensis cultivation.展开更多
Glycerol-3-phosphate acyltransferase(GPAT) is considered as the rate-limiting enzyme of glycerolipid synthesis pathway and the core element in lysophosphatidic acid(LPA) synthesis. For understanding its catalytic mech...Glycerol-3-phosphate acyltransferase(GPAT) is considered as the rate-limiting enzyme of glycerolipid synthesis pathway and the core element in lysophosphatidic acid(LPA) synthesis. For understanding its catalytic mechanism, the structural biology study is expected, but is always hindered by obtaining crystals for X-ray diffraction analysis. In this study, a progressive strategy to optimize the crystal of microalgae plastidial GPAT was presented. After the expression and purification of GPAT, the crystals were screened by hanging-drop and only clusters were obtained. The crystals were optimized by adjusting temperature, pH, protein concentration, or precipitant, but little improvement. To improve the interaction between protein and precipitant, the isopropanol was applied as co-precipitant. The qualified crystals formed. It's suggested that isopropanol is critical to affect protein crystallization by altering polyethylene glycol(PEG)-water-protein interaction when PEG serves as precipitant. The resulting crystal diffracted to a resolution of 2.75 ? and belonged to space group P1, with unit-cell parameters a = 50.79, b = 80.09, c = 88.21 ?, and α = 62.85, β = 73.04, γ = 80.53?. This work introduced a new strategy to optimize the crystal of the heterogeneous catalysis enzymes like GPAT and provided the fundamental structural information for the oriented synthesis of marine microalgae glycerolipid.展开更多
基金supported by the National High Technology Research and Development Program ‘863’ (No. 2012 AA052101)the Hundred Talent Program of the Chinese Academy of Sciences (No. A1097)
文摘Stress state of microalgal cells is caused under unfavorable conditions such as disordered light regime and depleted nitrogen. The stress state can impair photosynthetic efficiency, inhibit cell growth and result in the accumulation of triacylglycerol(TAG) from protective mechanisms. Continuous light or nitrogen starvation was applied on microalgae and performed effectively on inducing TAG production. To evaluate the light regime effect on inducing TAG production, the effect of different light regimes on nitrogen-starved Isochrysis zhangjiangensis was investigated in this work. The continuous light and nitrogen starvation elevated TAG content of biomass by 73% and 193%, respectively. Furthermore, the TAG accumulation of I. zhangjiangensis cell under nitrogen starvation decreased under aggravated stress from continuous illumination. Our results demonstrated that culturing the cells with 14 L: 10 D light regime under nitrogen starvation is the optimal mode to achieve maximal accumulation of TAG. A recovery in light regime was necessary for I. zhangjiangensis cultivation.
基金financially supported by the National Natural Science Foundation of China (Nos. 21576253, 31500294 and 31470432)
文摘Glycerol-3-phosphate acyltransferase(GPAT) is considered as the rate-limiting enzyme of glycerolipid synthesis pathway and the core element in lysophosphatidic acid(LPA) synthesis. For understanding its catalytic mechanism, the structural biology study is expected, but is always hindered by obtaining crystals for X-ray diffraction analysis. In this study, a progressive strategy to optimize the crystal of microalgae plastidial GPAT was presented. After the expression and purification of GPAT, the crystals were screened by hanging-drop and only clusters were obtained. The crystals were optimized by adjusting temperature, pH, protein concentration, or precipitant, but little improvement. To improve the interaction between protein and precipitant, the isopropanol was applied as co-precipitant. The qualified crystals formed. It's suggested that isopropanol is critical to affect protein crystallization by altering polyethylene glycol(PEG)-water-protein interaction when PEG serves as precipitant. The resulting crystal diffracted to a resolution of 2.75 ? and belonged to space group P1, with unit-cell parameters a = 50.79, b = 80.09, c = 88.21 ?, and α = 62.85, β = 73.04, γ = 80.53?. This work introduced a new strategy to optimize the crystal of the heterogeneous catalysis enzymes like GPAT and provided the fundamental structural information for the oriented synthesis of marine microalgae glycerolipid.