The main defense response to Soybean mosaic virus(SMV)infection in soybean[Glycine max(L.)Merr.]is thought to be blockage of intercellular virus transport by callose deposition on plasmodesmata.But the specific regula...The main defense response to Soybean mosaic virus(SMV)infection in soybean[Glycine max(L.)Merr.]is thought to be blockage of intercellular virus transport by callose deposition on plasmodesmata.But the specific regulatory mechanism remains largely unknown.In this study,we found that hydrogen peroxide(H_(2)O_(2))signal downstream of NO was associated with the regulation of callose accumulation.Abundant H_(2)O_(2)was produced on the cell membrane and cell wall in the incompatible combination of soybean cultivar Jidou 7 and SMV strain N3,whereas no obvious H_(2)O_(2)was observed in the compatible combination of Jidou 7 and strain SC-8.When H_(2)O_(2)production was inhibited,callose accumulation induced by SMV infection decreased to a level insufficient to restrict virus transport in the incompatible combination.The H_(2)O_(2)-associated transcriptome dynamics of soybean during SMV infection was investigated.Transcriptome and functional analysis using virus-induced gene silencing showed that Gm SEOB and Gm PAP27,two genes regulated by H_(2)O_(2),functioned in resistance by positively regulating the accumulation of callose in response to SMV infection.These results lay a foundation for further research on the signal transduction and molecular regulation of callose deposition during soybean resistance to SMV infection.展开更多
基金supported by the National Natural Science Foundation of China(30971706 and31471421)"973"Preliminary Program(2014CB160318)Hebei Natural Science Foundation(C2020204132)。
文摘The main defense response to Soybean mosaic virus(SMV)infection in soybean[Glycine max(L.)Merr.]is thought to be blockage of intercellular virus transport by callose deposition on plasmodesmata.But the specific regulatory mechanism remains largely unknown.In this study,we found that hydrogen peroxide(H_(2)O_(2))signal downstream of NO was associated with the regulation of callose accumulation.Abundant H_(2)O_(2)was produced on the cell membrane and cell wall in the incompatible combination of soybean cultivar Jidou 7 and SMV strain N3,whereas no obvious H_(2)O_(2)was observed in the compatible combination of Jidou 7 and strain SC-8.When H_(2)O_(2)production was inhibited,callose accumulation induced by SMV infection decreased to a level insufficient to restrict virus transport in the incompatible combination.The H_(2)O_(2)-associated transcriptome dynamics of soybean during SMV infection was investigated.Transcriptome and functional analysis using virus-induced gene silencing showed that Gm SEOB and Gm PAP27,two genes regulated by H_(2)O_(2),functioned in resistance by positively regulating the accumulation of callose in response to SMV infection.These results lay a foundation for further research on the signal transduction and molecular regulation of callose deposition during soybean resistance to SMV infection.