The effects of graphite granularity on the properties of low carbon MgO-C based materials have been investigated in the work. Large crystal fused magnesia, natural flake graphite with different particle sizes and anti...The effects of graphite granularity on the properties of low carbon MgO-C based materials have been investigated in the work. Large crystal fused magnesia, natural flake graphite with different particle sizes and anti-oxidant were adopted as raw material for preparation of specimens. However, the results show that the physical properties, oxidation resistance and thermal shock resistance of low carbon MgO-C materials with content of 4.0wt% graphite are improved obviously through the use of special and suitable size graphite. The excellent performance achieved was considered as a result of microstructure modification of MgO-C materials. Therefore, it is suggested that both fine and micro grade natural flake graphite used for production of low carbon MgO-C bricks.展开更多
The X56 steel samples was corroded in the medium of salt water solution at the conditions of CO2 partial pressure POM 0.5 to 2.0 MPa, temperature 80 °C and flow rate 1.4m/s. Corrosion weigh loss, composition and ...The X56 steel samples was corroded in the medium of salt water solution at the conditions of CO2 partial pressure POM 0.5 to 2.0 MPa, temperature 80 °C and flow rate 1.4m/s. Corrosion weigh loss, composition and structure, morphology and phase of corrosion films of the samples were investigate by SEM, EDS, XRD and XPS. The results indicated that the corrosion degree was accelerated with increasing POM ? The intense localised corrosion occurred on the surface of samples. The corrosion films mainly comprised of FeCO3 and complex phase products (Fe, Ca....)COj. There exists serious pitting on the metal substrates under the corrosion film. The theoretic and experimental analyses indicate this is caused by existed micropores or micro holes in films, which have the function of mass transportation.展开更多
文摘The effects of graphite granularity on the properties of low carbon MgO-C based materials have been investigated in the work. Large crystal fused magnesia, natural flake graphite with different particle sizes and anti-oxidant were adopted as raw material for preparation of specimens. However, the results show that the physical properties, oxidation resistance and thermal shock resistance of low carbon MgO-C materials with content of 4.0wt% graphite are improved obviously through the use of special and suitable size graphite. The excellent performance achieved was considered as a result of microstructure modification of MgO-C materials. Therefore, it is suggested that both fine and micro grade natural flake graphite used for production of low carbon MgO-C bricks.
文摘The X56 steel samples was corroded in the medium of salt water solution at the conditions of CO2 partial pressure POM 0.5 to 2.0 MPa, temperature 80 °C and flow rate 1.4m/s. Corrosion weigh loss, composition and structure, morphology and phase of corrosion films of the samples were investigate by SEM, EDS, XRD and XPS. The results indicated that the corrosion degree was accelerated with increasing POM ? The intense localised corrosion occurred on the surface of samples. The corrosion films mainly comprised of FeCO3 and complex phase products (Fe, Ca....)COj. There exists serious pitting on the metal substrates under the corrosion film. The theoretic and experimental analyses indicate this is caused by existed micropores or micro holes in films, which have the function of mass transportation.