The development of low-cost,robust and efficient non-noble metal electrocatalysts is still a pursuit for the hydrogen evolution reaction(HER).Herein,a self-standing electrocatalyst,Ni_(2)P/CoP nanosheet,was fabricated...The development of low-cost,robust and efficient non-noble metal electrocatalysts is still a pursuit for the hydrogen evolution reaction(HER).Herein,a self-standing electrocatalyst,Ni_(2)P/CoP nanosheet,was fabricated directly on three-dimensional Ni foams by two facile steps,which illustrated both high activity and stability for HER in different electrolytes.Benefiting from the porous structures of nanosheets with large specific surface area and the hybrid Ni_(2)P/CoP,the as-prepared electrocatalyst presented remarkable HER with overpotentials of 65.2 and 87.8 mV to reach a current density of-10 mA cm^(-2)in neutral and alkaline media,respectively.Density function theory calculations revealed a lower activation energy of water dissociation and efficient HER steps of hybrid Ni_(2)P/CoP nanosheets compared with mono CoP.The self-standing electrocatalyst maintained excellent chemical stability.Additionally,the HER process in domestic wastewater was realized with more impressive performance by using Ni_(2)P/CoP nanosheets compared with commercial Pt/C.Hydrogen was continuously generated for 20 h in mildly alkaline dishwashing wastewater.This work provides a feasible way to fabricate non-noble metal and self-standing hybrid bimetallic phosphides for HER in neutral and alkaline media,showing great potential for efficient hydrogen production by re-utilizing wastewater resources.展开更多
Polymer materials offer controllable structure-dependent performances in separation,catalysis and drug release.Their molecular structures can be precisely tailored to accept Li^(+)for energy storage applications.Here ...Polymer materials offer controllable structure-dependent performances in separation,catalysis and drug release.Their molecular structures can be precisely tailored to accept Li^(+)for energy storage applications.Here the design of sp^(2)carbon-based polyphenylene(PPH)with high lithium-ion uptakes and long-term stability is reported.Linear-PPH(L-PPH)exceeds the performance of crosslink-PPH(C-PPH),due to the fact that it has an ordered lamellar structure,promoting the Li^(+)intercalation/deintercalation channel.The L-PPH cell shows a clear charge and discharge plateau at 0.35 and 0.15 V vs.Li^(+)/Li,respectively,which is absent in the C-PPH cell.The Li^(+)storage capacity of L-PPH is five times that of the C-PPH.The reversible storage capacity is further improved to 261 m Ah g;by functionalizing the L-PPH with the–SO_(3)H groups.In addition,the Li-intercalated structures of C-PPH and L-PPH are investigated via near-edge X-ray absorption fine structure(NEXAFS),suggesting the high reversible Li^(+)–C=C bond interaction at L-PPH.This strategy,based on new insight into sp^(2)functional groups,is the first step toward a molecular understanding of the structure storage-capacity relationship in sp^(2)carbon-based polymer.展开更多
In this research, the natural bentonite clay (from Maghnia, western Algeria) was purified (Na+- montmorillonite, CEC = 91 meq/100 g), noted (puri.bent) and modified with mixed hydroxy-Fe-Al (FeAl-PILC). The purified b...In this research, the natural bentonite clay (from Maghnia, western Algeria) was purified (Na+- montmorillonite, CEC = 91 meq/100 g), noted (puri.bent) and modified with mixed hydroxy-Fe-Al (FeAl-PILC). The purified bentonite clay and FeAl-PILC were heated at 383 K for 2 hr and characte-rized by the chemical analyses data, XRD, and N2 adsorption to 77 K techniques. Puri.bent and FeAl-PILC were applied to fix the organic matter (OM) present in urban wastewater from the city of Sidi Bel-Abbes (western Algeria). The adsorption of organic matter was followed by spectro-photometry at 470 nm, and the adsorption data were a good fit with Freundlich isotherm for pu-ri.bent but for FeA-lPILC, were well fit by Elovitch isotherm model. The maximum adsorption ca-pacity (qm) was 571.6 mg/g for puri.bent and 1120.69 mg/g for FeAl-PLC. The degree of OM removal was 67% for puri.bent and 97% for FeAl-PILC. FeAl-PILC can be considered as a promising adsorbent for the removal of OM from wastewater.展开更多
Photooxidative removal of pharmaceuticals and organic dyes is an effective way to eliminate growing micropollutants. However, photooxidation often results in byproducts as secondary hazardous substances such as phytot...Photooxidative removal of pharmaceuticals and organic dyes is an effective way to eliminate growing micropollutants. However, photooxidation often results in byproducts as secondary hazardous substances such as phytotoxins. Herein, we found that photooxidation of common antibiotic tetracycline hydrochloride(TCH) over a metal-free 8-hydroxyquinoline(8-HQ) functionalized carbon nitride(CN) photocatalyst significantly reduces the TCH phytotoxic effect. The phytotoxicity test of photocatalytic treated TCH-solution evaluated towards seed growth of Cicer arietinum plant model endowed natural root and shoot growth.This study highlights the conceptual insights in designing of metal-free photocatalyst for environmental remediation.展开更多
The key to develop earth-abundant energy storage technologies sodium-and potassium-ion batteries(SIBs and PIBs)is to identify low-cost electrode materials that allow fast and reversible Na^(+)/K^(+)intercalation.Here,...The key to develop earth-abundant energy storage technologies sodium-and potassium-ion batteries(SIBs and PIBs)is to identify low-cost electrode materials that allow fast and reversible Na^(+)/K^(+)intercalation.Here,we report an intercalation-type material TiNb_(24)O_(62)as a versatile anode for SIBs and PIBs,via a synergistic strategy of oxygen vacancy and carbon incorporation to enhance ion and electron diffusion.The TiNb_(24)O_(62-x)/reduced graphene oxide(rGO)composite anode delivers high reversible capacities(130 mA h g^(-1)for SIBs and 178 mA h g^(-1)for PIBs),great rate performance(54 mA h g^(-1)for SIBs and 37 mA h g^(-1)for PIBs at 1 A g^(-1)),and superior cycle stability(73.7%after 500 cycles for SIBs and 84%after 300 cycles for PIBs).The performance is among the best results of intercalation-typemetal oxide anodes for SIBs and PIBs.The better performance of TiNb_(24)O_(62-x)/rGO in SIBs than PIBs is due to the better reaction kinetics of the former.Moreover,mechanistic study confirms that the redox activity of Nb4+/5+is responsible for the reversible intercalation of Na^(+)/K^(+).Our results suggest that TiNb_(24)O_(62-x)/rGO is a promising anode for SIBs and PIBs and may stimulate further research on intercalation-type compounds as candidate anodes for large ion batteries.展开更多
基金China Scholarship Council/University College London for joint PhD scholarships,Engineering and Physical Sciences Research Council(EPSRC,EP/V027433/1,EP/L015862/1,EP/R023581/1)supported by the Royal Academy of Engineering under the Research Chairs and Senior Research Fellowships scheme(Brett and Shearing)the Royal Society(RGS\R1\211080,IEC\NSFC\201261)for funding support.
文摘The development of low-cost,robust and efficient non-noble metal electrocatalysts is still a pursuit for the hydrogen evolution reaction(HER).Herein,a self-standing electrocatalyst,Ni_(2)P/CoP nanosheet,was fabricated directly on three-dimensional Ni foams by two facile steps,which illustrated both high activity and stability for HER in different electrolytes.Benefiting from the porous structures of nanosheets with large specific surface area and the hybrid Ni_(2)P/CoP,the as-prepared electrocatalyst presented remarkable HER with overpotentials of 65.2 and 87.8 mV to reach a current density of-10 mA cm^(-2)in neutral and alkaline media,respectively.Density function theory calculations revealed a lower activation energy of water dissociation and efficient HER steps of hybrid Ni_(2)P/CoP nanosheets compared with mono CoP.The self-standing electrocatalyst maintained excellent chemical stability.Additionally,the HER process in domestic wastewater was realized with more impressive performance by using Ni_(2)P/CoP nanosheets compared with commercial Pt/C.Hydrogen was continuously generated for 20 h in mildly alkaline dishwashing wastewater.This work provides a feasible way to fabricate non-noble metal and self-standing hybrid bimetallic phosphides for HER in neutral and alkaline media,showing great potential for efficient hydrogen production by re-utilizing wastewater resources.
基金funded by the Engineering and Physical Sciences Research Council(EPSRC)(EP/P02467X/1 and EP/S018204/1)the Centre for Nature Inspired Chemical Engineering(EP K038656/1)。
文摘Polymer materials offer controllable structure-dependent performances in separation,catalysis and drug release.Their molecular structures can be precisely tailored to accept Li^(+)for energy storage applications.Here the design of sp^(2)carbon-based polyphenylene(PPH)with high lithium-ion uptakes and long-term stability is reported.Linear-PPH(L-PPH)exceeds the performance of crosslink-PPH(C-PPH),due to the fact that it has an ordered lamellar structure,promoting the Li^(+)intercalation/deintercalation channel.The L-PPH cell shows a clear charge and discharge plateau at 0.35 and 0.15 V vs.Li^(+)/Li,respectively,which is absent in the C-PPH cell.The Li^(+)storage capacity of L-PPH is five times that of the C-PPH.The reversible storage capacity is further improved to 261 m Ah g;by functionalizing the L-PPH with the–SO_(3)H groups.In addition,the Li-intercalated structures of C-PPH and L-PPH are investigated via near-edge X-ray absorption fine structure(NEXAFS),suggesting the high reversible Li^(+)–C=C bond interaction at L-PPH.This strategy,based on new insight into sp^(2)functional groups,is the first step toward a molecular understanding of the structure storage-capacity relationship in sp^(2)carbon-based polymer.
文摘In this research, the natural bentonite clay (from Maghnia, western Algeria) was purified (Na+- montmorillonite, CEC = 91 meq/100 g), noted (puri.bent) and modified with mixed hydroxy-Fe-Al (FeAl-PILC). The purified bentonite clay and FeAl-PILC were heated at 383 K for 2 hr and characte-rized by the chemical analyses data, XRD, and N2 adsorption to 77 K techniques. Puri.bent and FeAl-PILC were applied to fix the organic matter (OM) present in urban wastewater from the city of Sidi Bel-Abbes (western Algeria). The adsorption of organic matter was followed by spectro-photometry at 470 nm, and the adsorption data were a good fit with Freundlich isotherm for pu-ri.bent but for FeA-lPILC, were well fit by Elovitch isotherm model. The maximum adsorption ca-pacity (qm) was 571.6 mg/g for puri.bent and 1120.69 mg/g for FeAl-PLC. The degree of OM removal was 67% for puri.bent and 97% for FeAl-PILC. FeAl-PILC can be considered as a promising adsorbent for the removal of OM from wastewater.
基金the department of science and technology fund for improvement of science and technology infrastructure (DST FIST) (No. SR/FST/CSI-279/2016(C)) for providing XRD and UV-DRS facilitiesthe department of science and technology science and engineering research board (DST-SERB) through the project (No. SB/EMEQ-052/2014 SERB) for financial assistancethe Director, Visvesvaraya National Institute of Technology (VNIT) Nagpur for financial support。
文摘Photooxidative removal of pharmaceuticals and organic dyes is an effective way to eliminate growing micropollutants. However, photooxidation often results in byproducts as secondary hazardous substances such as phytotoxins. Herein, we found that photooxidation of common antibiotic tetracycline hydrochloride(TCH) over a metal-free 8-hydroxyquinoline(8-HQ) functionalized carbon nitride(CN) photocatalyst significantly reduces the TCH phytotoxic effect. The phytotoxicity test of photocatalytic treated TCH-solution evaluated towards seed growth of Cicer arietinum plant model endowed natural root and shoot growth.This study highlights the conceptual insights in designing of metal-free photocatalyst for environmental remediation.
基金Engineering and Physical Sciences Research Council,Grant/Award Numbers:EP/V000152/1,EP/X000087/1Leverhulme Trust,Grant/Award Number:RPG-2021-138Royal Society,Grant/Award Numbers:RGS∖R2∖212324,SIF∖R2∖212002。
文摘The key to develop earth-abundant energy storage technologies sodium-and potassium-ion batteries(SIBs and PIBs)is to identify low-cost electrode materials that allow fast and reversible Na^(+)/K^(+)intercalation.Here,we report an intercalation-type material TiNb_(24)O_(62)as a versatile anode for SIBs and PIBs,via a synergistic strategy of oxygen vacancy and carbon incorporation to enhance ion and electron diffusion.The TiNb_(24)O_(62-x)/reduced graphene oxide(rGO)composite anode delivers high reversible capacities(130 mA h g^(-1)for SIBs and 178 mA h g^(-1)for PIBs),great rate performance(54 mA h g^(-1)for SIBs and 37 mA h g^(-1)for PIBs at 1 A g^(-1)),and superior cycle stability(73.7%after 500 cycles for SIBs and 84%after 300 cycles for PIBs).The performance is among the best results of intercalation-typemetal oxide anodes for SIBs and PIBs.The better performance of TiNb_(24)O_(62-x)/rGO in SIBs than PIBs is due to the better reaction kinetics of the former.Moreover,mechanistic study confirms that the redox activity of Nb4+/5+is responsible for the reversible intercalation of Na^(+)/K^(+).Our results suggest that TiNb_(24)O_(62-x)/rGO is a promising anode for SIBs and PIBs and may stimulate further research on intercalation-type compounds as candidate anodes for large ion batteries.