Noble metallic nanocrystals are used in a wide variety of applications,such as catalysis,batteries,and bio-and chemical sensors.Most of the previous studies focus on the preparation of thermodynamically stable nanocry...Noble metallic nanocrystals are used in a wide variety of applications,such as catalysis,batteries,and bio-and chemical sensors.Most of the previous studies focus on the preparation of thermodynamically stable nanocrystals enclosed by low-index facets and discuss their corresponding catalytic properties.Recently,researchers have found that the nanocrystals with high-index facets(HIFs)are of more interest for electrocatalysis.Herein,we review recent key progress in the synthesis of noble metallic nanoparticles enclosed with HIFs and their facetdependent electrocatalytic behaviors.First,we introduce the concept of HIFs,and establish the correlation between their surface structure and catalytic activity.Then,we discuss various synthetic approaches for controlling the shapes and composition of the nanocrystals enclosed by HIFs.Afterwards,we showcase the enhanced electrocatalytic performance realized by HIF-based nanostructures.Finally,we provide guidance on how to improve the electrocatalysis by engineering HIFs on noble metallic nanocrystals.展开更多
Highly-branched dendritic Pt-based nanocrystals possess great potential in catalyzing the oxygen reduction reaction(ORR),but encounter performance ceiling due to their poor thermal and electrochemical stability.Here,w...Highly-branched dendritic Pt-based nanocrystals possess great potential in catalyzing the oxygen reduction reaction(ORR),but encounter performance ceiling due to their poor thermal and electrochemical stability.Here,we present a novel Pt Fe nanodendrites(NDs)branched with two-dimensional(2 D)twinned nanoplates rather than conventional 1 D nanowires,which breaks the ORR performance ceiling of dendritic catalysts by inducing the unique Pt-skin configuration via rationally thermal treatment.By further hybridizing the Pt-skin Pt Fe NDs/C with amino-functionalized ionic liquids(ILs),we achieve an unprecedented mass activity of 3.15 A/mgPtat 0.9 V versus reversible hydrogen electrode(RHE)in the Pt Fe-based ORR electrocatalytic system.They also show excellent electrocatalytic durability for ORR with negligible activity decay and no apparent structural change after 20,000 cycles,in sharp contrast to the nanowires branched Pt Fe NDs counterpart.The remarkable catalytic performance is attributed to a combination of several structural features,including 2 D morphology,twin boundary,partially ordered phase and strong coordination with amino group.This work highlights the significance of stabilizing electrocatalytic structures via morphology tuning,which thus enables further surface and interface modification for performance breakthrough in ORR electrocatalysis.展开更多
The low-cost and high-capacity metal oxides/oxyhydroxides possess great merits as anodes for lithium-ion batteries(LIBs)with high energy density.However,their commercialization is greatly hindered by insufficient rate...The low-cost and high-capacity metal oxides/oxyhydroxides possess great merits as anodes for lithium-ion batteries(LIBs)with high energy density.However,their commercialization is greatly hindered by insufficient rate capability and cyclability.Rational regulations of metal oxides/oxyhydroxides with hollow geometry and disordered atomic frameworks represent efficient ways to improve their electrochemical properties.Herein,we propose a fast alkalietching method to realize the in-situ fabrication of iron oxyhydroxide with one-dimensional(1D)hierarchical hollow nanostructure and amorphous atomic structure from the iron vanadate nanowires.Benefiting from the improved electron/ion kinetics and efficient buffer ability for the volumetric change during the electro-cycles both in nanoscale and atomic level,the graphene-modified amorphous hierarchical FeOOH nanotubes(FeOOH-NTs)display high rate capability(~650 mA h g^−1 at 2000 mA g^−1)and superior long-term cycling stability(463 mA h g^−1 after 1800 cycles),which represents the best cycling performance among the reported FeOOH-based materials.More importantly,the selective dissolutionregrowth mechanism is demonstrated based on the time tracking of the whole transition process,in which the dissolution of FeVO4 and the in-situ selective re-nucleation of FeOOH during the formation of FeOOH-NTs play the key roles.The present strategy is also a general method to prepare various metal(such as Fe,Mn,Co,and Cu)oxides/oxyhydroxides with 1D hierarchical nanostructures.展开更多
Developing efficient water-splitting electrocatalysts with high mass activity is in urgent need for largescale sustainable production of hydrogen but,still remains as a big challenge.Herein,we report a one-pot method ...Developing efficient water-splitting electrocatalysts with high mass activity is in urgent need for largescale sustainable production of hydrogen but,still remains as a big challenge.Herein,we report a one-pot method to fabricate a series of core@shell Ni@RuM(M=Ni or Co)nanocrystals(NCs)with Ni as the core and tunable RuM(M=Ni or Co)as the alloy shell for efficient water-splitting catalysis.Among these core@shell NCs,the obtained Ni@Ru Ni NCs exhibit the highest intrinsic activity for hydrogen evolution reaction(HER)and possess an outstanding mass activity of 1590 m A mgRu^-1 at 0.07 V vs.reversible hydrogen electrode(RHE),which is 1.7 times higher than that of commercial Pt/C(950 m A mgPt^-1).As for oxygen evolution reaction(OER),the prepared Ni@Ru0.4 Co0.6 NCs with optimized shell composition achieve more enhanced mass activity of 270 m A mgRu^-1 at1.56 V vs.RHE,approaching three times higher than that of commercial RuO2(89 m A mgRu^-1).The superb mass activity of these Ni@Ru M(M=Ni or Co)NCs can be attributed to their core@shell structure and modulated electronic structure through alloying with Ni or Co metal in the shell.展开更多
Piezoelectric actuators operating in piezoelectric-induced strain/stress or electromechanical res.onanceinduced vibration or wave-motion friction drive mechanism have shown many advantagesover traditional electromagne...Piezoelectric actuators operating in piezoelectric-induced strain/stress or electromechanical res.onanceinduced vibration or wave-motion friction drive mechanism have shown many advantagesover traditional electromagnetic mot ors,especilly,when miniaturizing into millimeter-scale size,while magnetoelectric act uators operating in magnetostrictive mechanism are capable of piezo-dlectric self-sensing and remote operation under an applied magnetic field.This paper summarizesthe recent progresses in piezoelectric ceramic and single crystal materials based actuators andmicromotors,ferromagnetic/ferroeletric laminated magnetoelectric actuat ors,including rotary,linear,planner,and spherical motion actuators,and bending motion magnetoelectric actuators.Their driving mechanisms,operation propertics,and applications are also explained.展开更多
Fast actuation with nanoprecision over a large range has been a challenge in advanced intelligent manufacturing like lithography mask aligner.Traditional stacked stage method works effectively only in a local,limited ...Fast actuation with nanoprecision over a large range has been a challenge in advanced intelligent manufacturing like lithography mask aligner.Traditional stacked stage method works effectively only in a local,limited range,and vibration coupling is also challenging.Here,we design a dual mechanism multimodal linear actuator(DMMLA)consisted of piezoelectric and electromagnetic costator and coslider for producing macro-,micro-,and nanomotion,respectively.A DMMLA prototype is fabricated,and each working mode is validated separately,confirming its fast motion(0~50 mm/s)in macromotion mode,micromotion(0~135μm/s)and nanomotion(minimum step:0~2 nm)in piezoelectric step and servomotion modes.The proposed dual mechanism design and multimodal motion method pave the way for next generation high-precision actuator development.展开更多
The performance of fuel-cell related electrocatalysis is highly dependent on the morphology,size and composition of a given catalyst.In terms of rational design of Pt-based catalyst,one-dimensional(1 D)ultrafine Pt al...The performance of fuel-cell related electrocatalysis is highly dependent on the morphology,size and composition of a given catalyst.In terms of rational design of Pt-based catalyst,one-dimensional(1 D)ultrafine Pt alloy nanowires(NWs)are considered as a commendable model for enhanced catalysis on account of their favorable mass/charge transfer and structural durability.However,in order to achieve the noble metal catalysts in higher efficiency and lower cost,building high-index facets and shaping hollow interiors should be integrated into 1 D Pt alloy NWs,which has rarely been done so far.Here,we report the first synthesis of a class of spiny Pd/PtFe core/shell nanotubes(SPCNTs)constructed by cultivating PtFe alloy branches with rich high-index facets along the 1 D removable Pd supports,which is driven by the galvanic dissolution of Pd substrates concomitant with Stranski-Krastanov(S-K)growth of Pt and Fe,for achieving highly efficient fuel-cells-related electrocatalysis.This new catalyst can even deliver electrochemical active surface area(ECSA)of 62.7 m^(2)gPt^(-1),comparable to that of commercial carbonsupported Pt nanoparticles.With respect to oxygen reduction catalysis,the SPCNTs showcase the remarkable mass and specific activity of 2.71 A mg^(-1)and 4.32 mA cm^(-2),15.9 and 16.0 times higher than those of commercial Pt/C,respectively.Also,the catalysts exhibit extraordinary resistance to the activity decay and structural degradation during 50,000 potential cycles.Moreover,the SPCNTs serve as a category of efficient and stable catalysts towards anodic alcohol oxidation.展开更多
Tin selenides have been attracting great attention as anode materials for the state-of-the-art rechargeable sodium-ion batteries(SIBs)due to their high theoretical capacity and low cost.However,they deliver unsatisfac...Tin selenides have been attracting great attention as anode materials for the state-of-the-art rechargeable sodium-ion batteries(SIBs)due to their high theoretical capacity and low cost.However,they deliver unsatisfactory performance in practice,owing to their intrinsically low conductivity,sluggish kinetics and volume expansion during the charge-discharge process.Herein,we demonstrate the synthesis of SnSe2 nanocrystals coupled with hierarchical porous carbon(SnSe2 NCs/C)microspheres for boosting SIBs in terms of capacity,rate ability and durability.The unique structure of SnSe2 NCs/C possesses several advantages,including inhibiting the agglomeration of SnSe2 nanoparticles,relieving the volume expansion,accelerating the diffusion kinetics of electrons/ions,enhancing the contact area between the electrode and electrolyte and improving the structural stability of the composite.As a result,the as-obtained SnSe2 NCs/C microspheres show a high reversible capacity(565 mA h g^-1 after 100 cycles at 100 mA g^-1),excellent rate capability,and long cycling life stability(363 mA h g^-1 at1 A g^-1 after 1000 cycles),which represent the best performances among the reported SIBs based on SnSe2-based anode materials.展开更多
基金This work was financially supported by the Beijing Natural Science Foundation(JQ18005)the National Natural Science Foundation of China(NSFC)(No.51671003)+2 种基金National Basic Research Program of China(No.2016YFB0100201)the China Postdoctoral Science Foundation(No.2017M620518)Open Project Foundation of State Key Laboratory of Chemical Resource Engineering,the start-up supports from Peking University and Young Thousand Talented Program.
文摘Noble metallic nanocrystals are used in a wide variety of applications,such as catalysis,batteries,and bio-and chemical sensors.Most of the previous studies focus on the preparation of thermodynamically stable nanocrystals enclosed by low-index facets and discuss their corresponding catalytic properties.Recently,researchers have found that the nanocrystals with high-index facets(HIFs)are of more interest for electrocatalysis.Herein,we review recent key progress in the synthesis of noble metallic nanoparticles enclosed with HIFs and their facetdependent electrocatalytic behaviors.First,we introduce the concept of HIFs,and establish the correlation between their surface structure and catalytic activity.Then,we discuss various synthetic approaches for controlling the shapes and composition of the nanocrystals enclosed by HIFs.Afterwards,we showcase the enhanced electrocatalytic performance realized by HIF-based nanostructures.Finally,we provide guidance on how to improve the electrocatalysis by engineering HIFs on noble metallic nanocrystals.
基金supported by the National Key Research and Development Program of China(2016YFB0100201)the National Natural Science Foundation of China(51671003)+3 种基金Beijing Natural Science Foundation(JQ18005)BIC-ESAT Projectthe China Postdoctoral Science Foundation(2017M610022)Young Thousand Talented Program.
文摘Highly-branched dendritic Pt-based nanocrystals possess great potential in catalyzing the oxygen reduction reaction(ORR),but encounter performance ceiling due to their poor thermal and electrochemical stability.Here,we present a novel Pt Fe nanodendrites(NDs)branched with two-dimensional(2 D)twinned nanoplates rather than conventional 1 D nanowires,which breaks the ORR performance ceiling of dendritic catalysts by inducing the unique Pt-skin configuration via rationally thermal treatment.By further hybridizing the Pt-skin Pt Fe NDs/C with amino-functionalized ionic liquids(ILs),we achieve an unprecedented mass activity of 3.15 A/mgPtat 0.9 V versus reversible hydrogen electrode(RHE)in the Pt Fe-based ORR electrocatalytic system.They also show excellent electrocatalytic durability for ORR with negligible activity decay and no apparent structural change after 20,000 cycles,in sharp contrast to the nanowires branched Pt Fe NDs counterpart.The remarkable catalytic performance is attributed to a combination of several structural features,including 2 D morphology,twin boundary,partially ordered phase and strong coordination with amino group.This work highlights the significance of stabilizing electrocatalytic structures via morphology tuning,which thus enables further surface and interface modification for performance breakthrough in ORR electrocatalysis.
基金This work was supported by the National Key Research and Development Program of China(2017YFE0127600,2016YFA0202600)the Program of Introducing Talents of Discipline to Universities(B17034)+3 种基金the National Natural Science Foundation of China(51521001 and 51602239)the National Natural Science Fund for Distinguished Young Scholars(51425204)Hubei Provincial Natural Science Foundation(2016CFB267)the Fundamental Research Funds for the Central Universities(WUT:2017-YB-001).
文摘The low-cost and high-capacity metal oxides/oxyhydroxides possess great merits as anodes for lithium-ion batteries(LIBs)with high energy density.However,their commercialization is greatly hindered by insufficient rate capability and cyclability.Rational regulations of metal oxides/oxyhydroxides with hollow geometry and disordered atomic frameworks represent efficient ways to improve their electrochemical properties.Herein,we propose a fast alkalietching method to realize the in-situ fabrication of iron oxyhydroxide with one-dimensional(1D)hierarchical hollow nanostructure and amorphous atomic structure from the iron vanadate nanowires.Benefiting from the improved electron/ion kinetics and efficient buffer ability for the volumetric change during the electro-cycles both in nanoscale and atomic level,the graphene-modified amorphous hierarchical FeOOH nanotubes(FeOOH-NTs)display high rate capability(~650 mA h g^−1 at 2000 mA g^−1)and superior long-term cycling stability(463 mA h g^−1 after 1800 cycles),which represents the best cycling performance among the reported FeOOH-based materials.More importantly,the selective dissolutionregrowth mechanism is demonstrated based on the time tracking of the whole transition process,in which the dissolution of FeVO4 and the in-situ selective re-nucleation of FeOOH during the formation of FeOOH-NTs play the key roles.The present strategy is also a general method to prepare various metal(such as Fe,Mn,Co,and Cu)oxides/oxyhydroxides with 1D hierarchical nanostructures.
基金funding from the National Natural Science Foundation of China (21427811, 21721003 and 51671003)the Ministry of Science and Technology, China (2016YFA0203200)+1 种基金the Youth Innovation Promotion Association CAS (2016208)Jilin Province Science Technology Development Plan Project (20170101194JC)
文摘Developing efficient water-splitting electrocatalysts with high mass activity is in urgent need for largescale sustainable production of hydrogen but,still remains as a big challenge.Herein,we report a one-pot method to fabricate a series of core@shell Ni@RuM(M=Ni or Co)nanocrystals(NCs)with Ni as the core and tunable RuM(M=Ni or Co)as the alloy shell for efficient water-splitting catalysis.Among these core@shell NCs,the obtained Ni@Ru Ni NCs exhibit the highest intrinsic activity for hydrogen evolution reaction(HER)and possess an outstanding mass activity of 1590 m A mgRu^-1 at 0.07 V vs.reversible hydrogen electrode(RHE),which is 1.7 times higher than that of commercial Pt/C(950 m A mgPt^-1).As for oxygen evolution reaction(OER),the prepared Ni@Ru0.4 Co0.6 NCs with optimized shell composition achieve more enhanced mass activity of 270 m A mgRu^-1 at1.56 V vs.RHE,approaching three times higher than that of commercial RuO2(89 m A mgRu^-1).The superb mass activity of these Ni@Ru M(M=Ni or Co)NCs can be attributed to their core@shell structure and modulated electronic structure through alloying with Ni or Co metal in the shell.
基金supported by the National Natural Science Foundation of China(Grant Nos.50872002,51072003,and 51132001)the Ministry of Sci-ence and Technology of China through 973 Program(Grant No.2009CB623305).
文摘Piezoelectric actuators operating in piezoelectric-induced strain/stress or electromechanical res.onanceinduced vibration or wave-motion friction drive mechanism have shown many advantagesover traditional electromagnetic mot ors,especilly,when miniaturizing into millimeter-scale size,while magnetoelectric act uators operating in magnetostrictive mechanism are capable of piezo-dlectric self-sensing and remote operation under an applied magnetic field.This paper summarizesthe recent progresses in piezoelectric ceramic and single crystal materials based actuators andmicromotors,ferromagnetic/ferroeletric laminated magnetoelectric actuat ors,including rotary,linear,planner,and spherical motion actuators,and bending motion magnetoelectric actuators.Their driving mechanisms,operation propertics,and applications are also explained.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.51772005 and 51072003)Beijing Key Laboratory for Magnetoeletric Materials and Devices.
文摘Fast actuation with nanoprecision over a large range has been a challenge in advanced intelligent manufacturing like lithography mask aligner.Traditional stacked stage method works effectively only in a local,limited range,and vibration coupling is also challenging.Here,we design a dual mechanism multimodal linear actuator(DMMLA)consisted of piezoelectric and electromagnetic costator and coslider for producing macro-,micro-,and nanomotion,respectively.A DMMLA prototype is fabricated,and each working mode is validated separately,confirming its fast motion(0~50 mm/s)in macromotion mode,micromotion(0~135μm/s)and nanomotion(minimum step:0~2 nm)in piezoelectric step and servomotion modes.The proposed dual mechanism design and multimodal motion method pave the way for next generation high-precision actuator development.
基金the Xplorer Prize,the Beijing Natural Science Foundation(JQ18005,Z190010)the National Natural Science Foundation of China(NSFC)(51671003,and 21771156)+3 种基金National R&D Program of China(2017YFA0206701)the China Postdoctoral Science Foundation(2019M660290)the state Key Laboratory of Solidification Processing in NPU(SKLSP202004)the Start-up supports from Peking University and Young Thousand Talented Program.
文摘The performance of fuel-cell related electrocatalysis is highly dependent on the morphology,size and composition of a given catalyst.In terms of rational design of Pt-based catalyst,one-dimensional(1 D)ultrafine Pt alloy nanowires(NWs)are considered as a commendable model for enhanced catalysis on account of their favorable mass/charge transfer and structural durability.However,in order to achieve the noble metal catalysts in higher efficiency and lower cost,building high-index facets and shaping hollow interiors should be integrated into 1 D Pt alloy NWs,which has rarely been done so far.Here,we report the first synthesis of a class of spiny Pd/PtFe core/shell nanotubes(SPCNTs)constructed by cultivating PtFe alloy branches with rich high-index facets along the 1 D removable Pd supports,which is driven by the galvanic dissolution of Pd substrates concomitant with Stranski-Krastanov(S-K)growth of Pt and Fe,for achieving highly efficient fuel-cells-related electrocatalysis.This new catalyst can even deliver electrochemical active surface area(ECSA)of 62.7 m^(2)gPt^(-1),comparable to that of commercial carbonsupported Pt nanoparticles.With respect to oxygen reduction catalysis,the SPCNTs showcase the remarkable mass and specific activity of 2.71 A mg^(-1)and 4.32 mA cm^(-2),15.9 and 16.0 times higher than those of commercial Pt/C,respectively.Also,the catalysts exhibit extraordinary resistance to the activity decay and structural degradation during 50,000 potential cycles.Moreover,the SPCNTs serve as a category of efficient and stable catalysts towards anodic alcohol oxidation.
基金supported by the National Key R&D Research Program of China (2016YFB0100201)Beijing Natural Science Foundation (JQ18005)+2 种基金the National Natural Science Foundation of China (51671003, 21802003)China Postdoctoral Science Foundation (2019TQ0001)the start-up supports from Peking University and Young Thousand Talented Program
文摘Tin selenides have been attracting great attention as anode materials for the state-of-the-art rechargeable sodium-ion batteries(SIBs)due to their high theoretical capacity and low cost.However,they deliver unsatisfactory performance in practice,owing to their intrinsically low conductivity,sluggish kinetics and volume expansion during the charge-discharge process.Herein,we demonstrate the synthesis of SnSe2 nanocrystals coupled with hierarchical porous carbon(SnSe2 NCs/C)microspheres for boosting SIBs in terms of capacity,rate ability and durability.The unique structure of SnSe2 NCs/C possesses several advantages,including inhibiting the agglomeration of SnSe2 nanoparticles,relieving the volume expansion,accelerating the diffusion kinetics of electrons/ions,enhancing the contact area between the electrode and electrolyte and improving the structural stability of the composite.As a result,the as-obtained SnSe2 NCs/C microspheres show a high reversible capacity(565 mA h g^-1 after 100 cycles at 100 mA g^-1),excellent rate capability,and long cycling life stability(363 mA h g^-1 at1 A g^-1 after 1000 cycles),which represent the best performances among the reported SIBs based on SnSe2-based anode materials.