The precise control on the combination of multiple metal atoms in the structure of metal-organic frameworks(MOFs)endowed by reticular chemistry,allows the obtaining of materials with compositions that are programmed f...The precise control on the combination of multiple metal atoms in the structure of metal-organic frameworks(MOFs)endowed by reticular chemistry,allows the obtaining of materials with compositions that are programmed for achieving enhanced reactivity.The present work illustrates how through the transformation of MOFs with desired arrangements of metal cations,multi-metal spinel oxides with precise compositions can be obtained,and used as catalyst precursor for the reverse water-gas shift reaction.The differences in the spinel initial composition and structure,determined by neutron powder diffraction,influence the overall catalytic activity with changes in the process of in s itu formation of active,metal-oxide supported metal nanoparticles,which have been monitored and characterized with in situ X-ray diffraction and photoelectron spectroscopy studies.展开更多
基金We acknowledge Institut Laue-Langevin and Spanish initiatives on Neutron Scattering(ILL-SpINS)for beamtime at instrum ent D2B and G.Cuellofor assistance during data acquisition(10.5291/ILL-DATA.5-21-1114).We thank M.C.Capel for the TEM images and TEM-EDS analysis acquisition at Instituto de Catalisis y Petroleoquimica(CSIC).Funding:Work at Instituto de Ciencia de Materiales de Madrid-Consejo Superior de Instigaciones Cientfficas(CSIC)has been supported by the Spanish Research Agency(Agenda Estatal de Investigacion,AEI),Projects MAT2016-78465-R,CTQ2017-87262-R.This work was supported by the EU(ERC CoG HyMAP 648319)and Spanish MINECO(ENE2016-79608-C2-1-R).Authors also wish to thank to“Com unidad de Madrid”and European Structural Funds for their financial support to FotoArt-CM project(S2018/NMT-4367).F.G.acknowledges financial support from MINECO Ramon y Cajal program(RyC-2015-18384).
文摘The precise control on the combination of multiple metal atoms in the structure of metal-organic frameworks(MOFs)endowed by reticular chemistry,allows the obtaining of materials with compositions that are programmed for achieving enhanced reactivity.The present work illustrates how through the transformation of MOFs with desired arrangements of metal cations,multi-metal spinel oxides with precise compositions can be obtained,and used as catalyst precursor for the reverse water-gas shift reaction.The differences in the spinel initial composition and structure,determined by neutron powder diffraction,influence the overall catalytic activity with changes in the process of in s itu formation of active,metal-oxide supported metal nanoparticles,which have been monitored and characterized with in situ X-ray diffraction and photoelectron spectroscopy studies.