Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective int...Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions.展开更多
The efficient photo-response mechanism is one of the key factors in the commercialization of dye-sensitized solar cells in a bid to satisfy renewable energy demands. Progress in green technology has put solar energy o...The efficient photo-response mechanism is one of the key factors in the commercialization of dye-sensitized solar cells in a bid to satisfy renewable energy demands. Progress in green technology has put solar energy on the front burner as a provider of clean and affordable energy for a sustainable society. We report the synthesis of a novel Schiff base with optical transparency in the visible and near IR region of the solar spectrum that can find application in the DSSCs photo-response mechanism. The synthesized crystal exhibited features that could handle some of the shortcomings of dye-sensitized solar cells which include wide band solar spectrum absorption and capability for swift charge transfer within the photoelectrodes. The synthesized Schiff base was characterized using x-ray diffractometer, UV/Visible spectrometer, Frontier transmission infrared spectrometer and conductometer. XRD data revealed the grown crystal to have an average crystallite size of 2.08 nm with average microstrain value of about 269.43. The FT-IR recorded transmission wave ѵ (CO) at 1207.7 cm<sup>−1</sup> while dominant wave occurred at ѵ1654.9 and ѵ1592.3 cm<sup>−1</sup> relating to ѵ (CN) stretching and ѵ (NH) bending respectively were observed. The IR spectrum revealed the bonding species and a probable molecular structure of 2,6-bis(benzyloxy)pyridine. The UV/Visible spectra convoluted to maximum peak within the near IR region suggesting that 2,6-bis(benzyloxy)pyridine can absorb both the visible and near IR region while its electrical conductivity was determined to be 4.58 µS/cm. The obtained result of the present study revealed promising characteristics of a photosensitizer that can find application in the photo-response mechanism of DSSCs.展开更多
Indium tin oxide(ITO)thin films were prepared using the technique of rf-sputtering with oblique angle deposition(OAD).The films were as-deposited and thermally treated at 250℃.The combination of substrate inclination...Indium tin oxide(ITO)thin films were prepared using the technique of rf-sputtering with oblique angle deposition(OAD).The films were as-deposited and thermally treated at 250℃.The combination of substrate inclination and annealing was used for modifying morphological and structural properties that lead to changes of the optical properties.The resulting films show morphology of tilted nanocolumn,fissures among columns,and structural changes.The as-deposited films are structurally disordered with an amorphous component and the annealed films are crystallized and more ordered and the film diffractograms correspond to the cubic structure of In2O3.The refractive index could be modified up to 0.3 in as-deposited films and up to 0.15 in annealed films as functions of the inclination angle of the nanocolumns.Similarly,the band gap energy increases up to about 0.4 eV due to the reduction of the microstrain distribution.It is found that the microstrain distribution,which is related to lattice distortions,defects and the presence of fissures in the films,is the main feature that can be engineered through morphological modifications for achieving the adjustment of the optical properties.展开更多
We demonstrated a unique synthesis approach of graphene(GR)-wrapped AgPO/LaCOOH(APO/LCO)heterostructures by an in-situ wet chemical method. FESEM analysis reveals the formation of rhombic dodecahedrons of APO deco...We demonstrated a unique synthesis approach of graphene(GR)-wrapped AgPO/LaCOOH(APO/LCO)heterostructures by an in-situ wet chemical method. FESEM analysis reveals the formation of rhombic dodecahedrons of APO decorated with LCO and later wrapped with GR flakes. Optical studies shows two absorption edges corresponding to the band gap energies of APO(2.41 eV) and LCO(4.1 eV). Considering the absorption edge of the heterostructures in the visible region, the photocatalytic activities of photocatalysts containing different APO/LCO mass ratios were evaluated by the degradation of MB. GR-decorated composite with 20% LCO(APO/LCO20/GR) exhibited the highest photocatalytic activity for MB degradation, with a rate constant, k of 0.541 min. The photocatalytic activity of APO/LCO20/GR more greatly enhanced than those of the individual constituents(APO, LCO, APO/LCO20). The enhanced photocatalytic activity of the heterostructure can be attributed to the co-catalytic effect of LCO as well as intriguing physicochemical properties of GR. To understand the enhanced photocatalytic activity of the heterostructures the photocatalytic reaction mechanism is proposed in detail. The recyclability of the APO/LCO/GR composite photocatalyst is further evaluated by reusing the catalyst in replicate photocatalytic experiments which shows consistent photocatalytic activity thereby confirms the stability and reusability of heterostructure photocatalyst.展开更多
The effect of hydrochloric acid concentration on stainless steel (Fe6956) at temperature range 303 - 333 ± 1 K has been studied using weight loss, thermometric and electrochemical polarization techniques. The cor...The effect of hydrochloric acid concentration on stainless steel (Fe6956) at temperature range 303 - 333 ± 1 K has been studied using weight loss, thermometric and electrochemical polarization techniques. The corrosion rate of the stainless steel was found to be dependent on both temperature variation and acid concentration. The potentiostatic study showed that the active passive transition depends strongly on acid concentration while the weight loss measurements revealed that 2 M HCl at temperature 333 K had an appreciable corrosion rate which corresponds to 14.04 × 10﹣3 reaction number (RN) got from thermometric monitoring. Arrhenius equation and transition state theory were used to calculate kinetic and thermodynamic parameter such as Ea, ΔH* and ΔS*. Results obtained showed that corrosion reaction of Fe6956 in HCl is spontaneous and there is good agreement between the data got from the techniques employed.展开更多
The G?ksun(Kahramanmaras)ophiolite(GKO),cropping out in a tectonic window bounded by the Malatya metamorphic unit on both the north and south,is located in the EW-trending lower nappe zone of the southeast Anatolian o...The G?ksun(Kahramanmaras)ophiolite(GKO),cropping out in a tectonic window bounded by the Malatya metamorphic unit on both the north and south,is located in the EW-trending lower nappe zone of the southeast Anatolian orogenic belt(Turkey).It exhibits a complete oceanic lithospheric section and overlies the Middle Eocene Maden Group/Complex with a tectonic contact at its base.The ophiolitic rocks and the tectonically overlying Malatya metamorphic(continental)unit were intruded by I-type calc-alkaline Late Cretaceous granitoid(~81-84 Ma).The ultramafic to cumulates in the GKO are represented by wehrlite,plagioclase wehrlite,olivine gabbro and gabbro.The crystallization order for the cumulate rocks is as follows:olivine±chromian spinel→clinopyroxene→plagioclase.The major and trace element geochemistry as well as the mineral chemistry of the ultramafic to mafic cumulate rocks suggest that the primary magma generating the GKO is compositionally similar to that observed in the modern island-arc tholeiitic sequences.The mineral chemistry of the ultramafic to mafic cumulates indicates that they were derived from a mantle source that was previously depleted by earlier partial melting events.The highly magnesian olivine(Fo77-83),clinopyroxene(Mg#of 82-90)and the highly Ca-plagioclase(An81-89)exhibit a close similarity to those,which formed in a supra-subduction zone(SSZ)setting.The field and the geochemical evidence suggest that the GKO formed as part of a much larger sheet of oceanic lithosphere,which accreted to the base of the Tauride active continental margin,including the ispendere,K?mürhan and the Guleman ophiolites.The latter were contemporaneous and genetically/tectonically related within the same SSZ setting during the closure of the Neotethyan oceanic basin(Berit Ocean)between the Taurides to the north and the Bitlis-Pütürge massif to the south during the Late Cretaceous.展开更多
In this work, we present a theoretical study of a vertical parallel junction silicon solar cell under monochromatic illumination. The internal quantum efficiency (IQE) and the photovoltaic conversion efficiency are ca...In this work, we present a theoretical study of a vertical parallel junction silicon solar cell under monochromatic illumination. The internal quantum efficiency (IQE) and the photovoltaic conversion efficiency are calculated, taking into account the base doping density and illumination wave-length. The main purpose of this work is to show how conversion efficiency depends on internal quantum efficiency and the dependence of the later on the base doping density.展开更多
In this study we report the effect of laser parameters such as laser energy, laser wavelength as well as focusing condition of laser beam on the size and morphology of the gold nanoparticles (GNPs) prepared in deionis...In this study we report the effect of laser parameters such as laser energy, laser wavelength as well as focusing condition of laser beam on the size and morphology of the gold nanoparticles (GNPs) prepared in deionised water by pulsed laser ablation. The optimum conditions at which gold nanoparticles obtained with controllable average size have been reported as these parameters affected on the size, distribution and absorbance spectrum. Effect of energy was studied. The laser energy was divided into three regions (low, middle and high). A noteworthy change was observed at each region, as the average size changed from 5.9 nm at low energy to 14.4 nm at high energy and the gold nanoparticles reached a critical size of 8 nm at 100 mJ. The Effect of the wavelength on the particle size was examined at 1064 nm, 532 nm. It was found that, the optimum ablation laser wavelength was 1064 nm. Finally, significant results obtained when the effect of focusing conditions studied.展开更多
Ab initio calculations are performed on the electronic, structural, elastic and optical properties of the cubic per- ovskite KCdF3. Tile Kohn Sham equations are solved by applying the full potential linearized augment...Ab initio calculations are performed on the electronic, structural, elastic and optical properties of the cubic per- ovskite KCdF3. Tile Kohn Sham equations are solved by applying the full potential linearized augmented plane wave (FP-LAPW) method. The exchange correlation effects are included through the local density approximation (LDA ), generalized gradient approximation (GGA) and modified Becke-Johnson (mBJ) exchange potential The calculated lattice constant is in good agreement with the experimental result. The elastic properties such as elastic constants, anisotropy factor, shear modulus, Young's modulus and Poisson's ratio are calculated. KCdF3 is ductile and elastically anisotropic. The calculations of the electronic band structure, density of states (DOS) and charge density show that this compound has an indirect energy band gap (M-F) with a mixed ionic and covalent bonding. The contribution of the different bands is analyzed from the total and partial density of states curves. Optical response of the dielectric functions, optical reflectivity, absorption coefficient, real part of optical conductivity, refractive index, extinction coefficient and electron energy loss, are presented for the energy range of O-40eV. The compound KCdF3 can be used for high-frequency optical and optoelectronic devices.展开更多
Ceramics usually have irregular grains, cracking, or porosity, which result in their lightproof.Y2Mo3O12 ceramics have more porosity due to the heavy hygroscopicity.Introducing ZnLi to Y2Mo3O12 could form regular grai...Ceramics usually have irregular grains, cracking, or porosity, which result in their lightproof.Y2Mo3O12 ceramics have more porosity due to the heavy hygroscopicity.Introducing ZnLi to Y2Mo3O12 could form regular grains, reduce cracking and porosity.With increasing the content of ZnLi, the grain shapes self-assembly gradually and then the laser scattering and transmittance improve.The laser scattering property and transmittance of diverging rays become the best in ceramics Y2-x(ZnLi)xMo3O12(x = 1.0 and 1.2) with regular grains and low thermal expansion.The formation mechanism of regular grains is ascribed to the substitutions of Zn^2+ and Li+for Y^3+ in Y2Mo3O12 resulting in the preferential growth.The investigation in laser scattering, transmittance and low thermal expansion behaviors of Y2-x(ZnLi)xMo3O12 could pave a way to weaken the strong-laser attack from the high-power laser weapon and the other.展开更多
Electronic,structural and optical properties of the cubic perovskite CsCaF_(3) are calculated by using the full potential linearized augmented plane wave(FP-LAPW)plus local orbitals method with generalized gradient ap...Electronic,structural and optical properties of the cubic perovskite CsCaF_(3) are calculated by using the full potential linearized augmented plane wave(FP-LAPW)plus local orbitals method with generalized gradient approximation(GGA)in the framework of the density functional theory.The calculated lattice constant is in good agreement with the experimental result.The electronic band structure shows that the fundamental band gap is wide and indirect at(Γ–R)point.The contribution of the different bands is analyzed from the total and partial density of states curves.The charge density plots show strong ionic bonding in Cs-F,and ionic and weak covalent bonding between Ca and F.Calculations of the optical spectra,viz.,the dielectric function,optical reflectivity,absorption coefficient,real part of optical conductivity,refractive index,extinction coefficient and electron energy loss,are performed for the energy range 0–30 eV.展开更多
AD = 1 position-dependent mass approach to constructing nonlinear quantum states for a modified Coulomb potential is used to generate Gazeau–Klauder coherent states. It appears that their energy eigenvalues are scale...AD = 1 position-dependent mass approach to constructing nonlinear quantum states for a modified Coulomb potential is used to generate Gazeau–Klauder coherent states. It appears that their energy eigenvalues are scaled down by the quantum number and the nonlinearity coefficient. We study the basic properties of these states, which are found to be undefined on the whole complex plane, and some details of their revival structure are discussed.展开更多
We have explored the magnetic properties of Nitrogen doped cubic MgO using the full potential linearized augmented plane wave (FP-LAPW) method. The unit cell has 128 atoms, and two Nitrogen atoms are placed in the pos...We have explored the magnetic properties of Nitrogen doped cubic MgO using the full potential linearized augmented plane wave (FP-LAPW) method. The unit cell has 128 atoms, and two Nitrogen atoms are placed in the positions of oxygen sites. This corresponds to 3.125% doping concentration. Our calculations predict that the ferromagnetic state, with a magnetic moment of about 1.0 μB per Nitrogen-dopant, is more favorable in energy than the nonmagnetic state, and the ferromagnetic correlations are influenced by the impurity bound state. The magnetic moment mainly arises from p orbital of Nitrogen which substitutes the Oxygen atom, with a little contribution from the Oxygen atoms surrounding Nitrogen atom. The resulting band structure and densities of states agree well with the recent theoretical works. The ferromagnetic ordering temperatures obtained from DFT simulations have been given in detail. Our results show that the pressure enhances the temperature in MgO:N.展开更多
During the hydration process, the Ultra-fine Cements present specific physical and chemical characteristics; they are, very short setting time and high heat release. For special applications, such as rapid hardening a...During the hydration process, the Ultra-fine Cements present specific physical and chemical characteristics; they are, very short setting time and high heat release. For special applications, such as rapid hardening and early high strength mortars or concretes, these characteristics can be considered advantageous. Some commercial products used for concrete reinforcement and repairs are the Rapid Hardening Mortars, these mortars must develop a time of setting up to 3 h and an initial compressive strength of about 3.5 MPa once the hardening of the paste is reached. The objective of the present research work is to use Ultra-fine Cement for the preparation of a series of different Rapid Hardening Mortars (with different percentages of Ultra-fine Cement), these mortars required the addition of a polycarboxylate-base specification F Superplasticizer. It was observed that the optimum water/cement (W/C) ratio for the hydration of the Ultra-fine Cements is W/C = 0.385. The Ultra-fine Cements were obtained by the High Energy Ball-milling technique at laboratory scale, 90% of the Particle Size Distribution is below 11 μm and the Blaine Specific Surface Area is over 9000 cm^2/g.展开更多
We perform self-consistent ab-initio calculations to study the structural and electronic properties of zinc blende ZnS, ZnO and their alloy. The full-potential muffin-tin orbitals (FP-LMTO) method was employed within ...We perform self-consistent ab-initio calculations to study the structural and electronic properties of zinc blende ZnS, ZnO and their alloy. The full-potential muffin-tin orbitals (FP-LMTO) method was employed within density functional theory (DFT) based on local density Approximation (LDA), and generalized gradient approximation (GGA). We analyze composition effect on lattice constants, bulk modulus, band gap and effective mass of the electron. Using the approach of Zunger and coworkers, the microscopic origins of band gap bowing have been detailed and explained. Discussions will be given in comparison with results obtained with other available theoretical and experimental results.展开更多
The effect of Zn2+ ions on the microstructure and electrical properties of Mn1-xZnxFe2O4 (0.0 ≤ x ≤ 0.5 in steps of 0.1) through a solid state reaction has been investigated. The structural properties have been inve...The effect of Zn2+ ions on the microstructure and electrical properties of Mn1-xZnxFe2O4 (0.0 ≤ x ≤ 0.5 in steps of 0.1) through a solid state reaction has been investigated. The structural properties have been investigated using X-ray diffraction (XRD) technique. The XRD analysis confirms that all samples are in a single-phase cubic spinel structure. The experimental lattice parameter (aexp) was decreased with increasing Zn2+ ions substitution due to the smaller ionic radius of zinc content. The crystallite size (t) of samples was estimated by Scherrer’s formula and found in the range (90 - 115 nm). Dc electrical resistivity and Seebeck voltage coefficients were measured as a function of temperature using the two probe methods. The temperature variation of resistivity exhibits two breaks, each break referring to a change in the activation energy. The Curie temperature estimated from dc resistivity measurement decreases with increasing Zn2+ ions. Seebeck voltage coefficient measurements reveal n-type conduction for all samples.展开更多
Comparative investigations of gas sensing characteristics of Fe2O3 in both thin film as well as bulk forms have been performed. Thin film sensors were realized by first depositing Fe films using electron-beam evaporat...Comparative investigations of gas sensing characteristics of Fe2O3 in both thin film as well as bulk forms have been performed. Thin film sensors were realized by first depositing Fe films using electron-beam evaporation followed by thermal oxidation. Bulk sensors in the form of pellets were prepared by cold pressing commercial Fe2O3 powder with subsequent sintering. Both thin film and bulk Fe2O3 sensors exhibited a selective and reversible response characteristics towards H2S with maximum response at an operating temperature of 250°C and 200°C, respectively. A negligible response towards other interfering gases was observed. Thin film sensors exhibited an enhanced response in comparison to that of pellets.展开更多
To produce high-purity silica sand usable for glass making, the present study was carried out. The objective of this work was to increase the silicon dioxide (SiO<sub>2</sub>) content to at least 99% using...To produce high-purity silica sand usable for glass making, the present study was carried out. The objective of this work was to increase the silicon dioxide (SiO<sub>2</sub>) content to at least 99% using a simple process without chemical input. The raw sand samples were taken from the Ivorian sedimentary basin, from Maféré and Assinie areas, C<span style="white-space:nowrap;">ô</span>te d’Ivoire. Wet sieving and attrition technique were used for the purification process. The results from the energy dispersive spectrometer (EDS) analyses of the raw and treated samples show a significant increase of silica content and a significant reduction of impurities. The silica content (SiO<sub>2</sub>) of the sand of Maféré increases from 98.73% ± 0.15% to 99.92% ± 0.05%. And the sand of Assinie increased from 98.82% ± 0.67% in the raw samples to 99.44% ± 0.27% after treatment. The rate of iron oxide and alumina is reduced in these sands. Moreover, the sand of Maféré contains 53.2% of grains of size lower than 500 microns and that of Assinie contains 29.30%. Regarding the chemical composition of these purified sands, they meet the standard BS2975s, the American Ceramic Society and the National Bureau of Standards for window glass making.展开更多
In this work, the effects of boundaries conditions and truncation errors in the distribution of minority carriers in the semiconductor are studied. It is a one-dimensional digital study of a polycrystalline silicon so...In this work, the effects of boundaries conditions and truncation errors in the distribution of minority carriers in the semiconductor are studied. It is a one-dimensional digital study of a polycrystalline silicon solar cell under polychromatic illumination in a dynamic state. Starting from the Boltzmann equation of semiconductors, the author establishes the general equation of particle transport. Assumptions made on the latter allow it to give the equation of distribution of minority carriers in a general way in its case to be studied. This dimensioned distribution equation reveals the parameters of influences on the distribution of carriers. It obtains a partial derivative equation for the carrier distribution function. The boundary conditions are then discretized to order one and then to order two. By considering boundary conditions and the nature of the carriers, the author numerically resolves the discretized general equation by assessing the influence of the nature of the boundary conditions and truncation errors and the influence of the discretization step on the density of the charge carriers by setting certain parameters and varying others. The work ends with a conclusion and logical follow-up to this work.展开更多
基金provided by Guizhou Provincial Science and Technology Projects for Platform and Talent Team Plan(GCC[2023]007)Fok Ying Tung Education Foundation(171095)National Natural Science Foundation of China(11964006).
文摘Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions.
文摘The efficient photo-response mechanism is one of the key factors in the commercialization of dye-sensitized solar cells in a bid to satisfy renewable energy demands. Progress in green technology has put solar energy on the front burner as a provider of clean and affordable energy for a sustainable society. We report the synthesis of a novel Schiff base with optical transparency in the visible and near IR region of the solar spectrum that can find application in the DSSCs photo-response mechanism. The synthesized crystal exhibited features that could handle some of the shortcomings of dye-sensitized solar cells which include wide band solar spectrum absorption and capability for swift charge transfer within the photoelectrodes. The synthesized Schiff base was characterized using x-ray diffractometer, UV/Visible spectrometer, Frontier transmission infrared spectrometer and conductometer. XRD data revealed the grown crystal to have an average crystallite size of 2.08 nm with average microstrain value of about 269.43. The FT-IR recorded transmission wave ѵ (CO) at 1207.7 cm<sup>−1</sup> while dominant wave occurred at ѵ1654.9 and ѵ1592.3 cm<sup>−1</sup> relating to ѵ (CN) stretching and ѵ (NH) bending respectively were observed. The IR spectrum revealed the bonding species and a probable molecular structure of 2,6-bis(benzyloxy)pyridine. The UV/Visible spectra convoluted to maximum peak within the near IR region suggesting that 2,6-bis(benzyloxy)pyridine can absorb both the visible and near IR region while its electrical conductivity was determined to be 4.58 µS/cm. The obtained result of the present study revealed promising characteristics of a photosensitizer that can find application in the photo-response mechanism of DSSCs.
基金supported by the Project No.CB/2012/178748 CONACYT/México
文摘Indium tin oxide(ITO)thin films were prepared using the technique of rf-sputtering with oblique angle deposition(OAD).The films were as-deposited and thermally treated at 250℃.The combination of substrate inclination and annealing was used for modifying morphological and structural properties that lead to changes of the optical properties.The resulting films show morphology of tilted nanocolumn,fissures among columns,and structural changes.The as-deposited films are structurally disordered with an amorphous component and the annealed films are crystallized and more ordered and the film diffractograms correspond to the cubic structure of In2O3.The refractive index could be modified up to 0.3 in as-deposited films and up to 0.15 in annealed films as functions of the inclination angle of the nanocolumns.Similarly,the band gap energy increases up to about 0.4 eV due to the reduction of the microstrain distribution.It is found that the microstrain distribution,which is related to lattice distortions,defects and the presence of fissures in the films,is the main feature that can be engineered through morphological modifications for achieving the adjustment of the optical properties.
基金Department of Electronics and Information Technology (Deit Y, New Delhi) for financial supportUGC-SAP, DST-FIST Department of Chemistry, Shivaji University Kolhapursupported by the Commercialization Promotion Agency for R&D Outcomes (COMPA) funded by the Ministry of Science, ICT and Future Planning (MISP) and NRF-2013R1A2A2A05005589
文摘We demonstrated a unique synthesis approach of graphene(GR)-wrapped AgPO/LaCOOH(APO/LCO)heterostructures by an in-situ wet chemical method. FESEM analysis reveals the formation of rhombic dodecahedrons of APO decorated with LCO and later wrapped with GR flakes. Optical studies shows two absorption edges corresponding to the band gap energies of APO(2.41 eV) and LCO(4.1 eV). Considering the absorption edge of the heterostructures in the visible region, the photocatalytic activities of photocatalysts containing different APO/LCO mass ratios were evaluated by the degradation of MB. GR-decorated composite with 20% LCO(APO/LCO20/GR) exhibited the highest photocatalytic activity for MB degradation, with a rate constant, k of 0.541 min. The photocatalytic activity of APO/LCO20/GR more greatly enhanced than those of the individual constituents(APO, LCO, APO/LCO20). The enhanced photocatalytic activity of the heterostructure can be attributed to the co-catalytic effect of LCO as well as intriguing physicochemical properties of GR. To understand the enhanced photocatalytic activity of the heterostructures the photocatalytic reaction mechanism is proposed in detail. The recyclability of the APO/LCO/GR composite photocatalyst is further evaluated by reusing the catalyst in replicate photocatalytic experiments which shows consistent photocatalytic activity thereby confirms the stability and reusability of heterostructure photocatalyst.
文摘The effect of hydrochloric acid concentration on stainless steel (Fe6956) at temperature range 303 - 333 ± 1 K has been studied using weight loss, thermometric and electrochemical polarization techniques. The corrosion rate of the stainless steel was found to be dependent on both temperature variation and acid concentration. The potentiostatic study showed that the active passive transition depends strongly on acid concentration while the weight loss measurements revealed that 2 M HCl at temperature 333 K had an appreciable corrosion rate which corresponds to 14.04 × 10﹣3 reaction number (RN) got from thermometric monitoring. Arrhenius equation and transition state theory were used to calculate kinetic and thermodynamic parameter such as Ea, ΔH* and ΔS*. Results obtained showed that corrosion reaction of Fe6956 in HCl is spontaneous and there is good agreement between the data got from the techniques employed.
基金supported by TüBITAK (YDABCAG199Y011) and the Cukurova University Scientific Research Projects (MMF2002BAP41)the Open Fund (GPMR201702) of State Key Lab of Geological Processes and Mineral Resources,China University of Geosciences,Wuhansubsidy by the Russian Government to support the Program of competitive growth of Kazan Federal University
文摘The G?ksun(Kahramanmaras)ophiolite(GKO),cropping out in a tectonic window bounded by the Malatya metamorphic unit on both the north and south,is located in the EW-trending lower nappe zone of the southeast Anatolian orogenic belt(Turkey).It exhibits a complete oceanic lithospheric section and overlies the Middle Eocene Maden Group/Complex with a tectonic contact at its base.The ophiolitic rocks and the tectonically overlying Malatya metamorphic(continental)unit were intruded by I-type calc-alkaline Late Cretaceous granitoid(~81-84 Ma).The ultramafic to cumulates in the GKO are represented by wehrlite,plagioclase wehrlite,olivine gabbro and gabbro.The crystallization order for the cumulate rocks is as follows:olivine±chromian spinel→clinopyroxene→plagioclase.The major and trace element geochemistry as well as the mineral chemistry of the ultramafic to mafic cumulate rocks suggest that the primary magma generating the GKO is compositionally similar to that observed in the modern island-arc tholeiitic sequences.The mineral chemistry of the ultramafic to mafic cumulates indicates that they were derived from a mantle source that was previously depleted by earlier partial melting events.The highly magnesian olivine(Fo77-83),clinopyroxene(Mg#of 82-90)and the highly Ca-plagioclase(An81-89)exhibit a close similarity to those,which formed in a supra-subduction zone(SSZ)setting.The field and the geochemical evidence suggest that the GKO formed as part of a much larger sheet of oceanic lithosphere,which accreted to the base of the Tauride active continental margin,including the ispendere,K?mürhan and the Guleman ophiolites.The latter were contemporaneous and genetically/tectonically related within the same SSZ setting during the closure of the Neotethyan oceanic basin(Berit Ocean)between the Taurides to the north and the Bitlis-Pütürge massif to the south during the Late Cretaceous.
文摘In this work, we present a theoretical study of a vertical parallel junction silicon solar cell under monochromatic illumination. The internal quantum efficiency (IQE) and the photovoltaic conversion efficiency are calculated, taking into account the base doping density and illumination wave-length. The main purpose of this work is to show how conversion efficiency depends on internal quantum efficiency and the dependence of the later on the base doping density.
文摘In this study we report the effect of laser parameters such as laser energy, laser wavelength as well as focusing condition of laser beam on the size and morphology of the gold nanoparticles (GNPs) prepared in deionised water by pulsed laser ablation. The optimum conditions at which gold nanoparticles obtained with controllable average size have been reported as these parameters affected on the size, distribution and absorbance spectrum. Effect of energy was studied. The laser energy was divided into three regions (low, middle and high). A noteworthy change was observed at each region, as the average size changed from 5.9 nm at low energy to 14.4 nm at high energy and the gold nanoparticles reached a critical size of 8 nm at 100 mJ. The Effect of the wavelength on the particle size was examined at 1064 nm, 532 nm. It was found that, the optimum ablation laser wavelength was 1064 nm. Finally, significant results obtained when the effect of focusing conditions studied.
基金Supported by UGC,New Delhi through UGC-BSR(JRF)fellowships
文摘Ab initio calculations are performed on the electronic, structural, elastic and optical properties of the cubic per- ovskite KCdF3. Tile Kohn Sham equations are solved by applying the full potential linearized augmented plane wave (FP-LAPW) method. The exchange correlation effects are included through the local density approximation (LDA ), generalized gradient approximation (GGA) and modified Becke-Johnson (mBJ) exchange potential The calculated lattice constant is in good agreement with the experimental result. The elastic properties such as elastic constants, anisotropy factor, shear modulus, Young's modulus and Poisson's ratio are calculated. KCdF3 is ductile and elastically anisotropic. The calculations of the electronic band structure, density of states (DOS) and charge density show that this compound has an indirect energy band gap (M-F) with a mixed ionic and covalent bonding. The contribution of the different bands is analyzed from the total and partial density of states curves. Optical response of the dielectric functions, optical reflectivity, absorption coefficient, real part of optical conductivity, refractive index, extinction coefficient and electron energy loss, are presented for the energy range of O-40eV. The compound KCdF3 can be used for high-frequency optical and optoelectronic devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60976016,61350012,and 11574276)the Key Scientific Research Projects of Henan Province,China(Grant No.15B140004)+2 种基金Henan Science and Technology Development Project,China(Grant No.182102210241)Key Projects of Science and Technology Research of Henan Provincial Department of Education,China(Grant No.18A140014)Industrial Science and Technology Research Projects of Kaifeng,Henan Province,China(Grant No.1501049)
文摘Ceramics usually have irregular grains, cracking, or porosity, which result in their lightproof.Y2Mo3O12 ceramics have more porosity due to the heavy hygroscopicity.Introducing ZnLi to Y2Mo3O12 could form regular grains, reduce cracking and porosity.With increasing the content of ZnLi, the grain shapes self-assembly gradually and then the laser scattering and transmittance improve.The laser scattering property and transmittance of diverging rays become the best in ceramics Y2-x(ZnLi)xMo3O12(x = 1.0 and 1.2) with regular grains and low thermal expansion.The formation mechanism of regular grains is ascribed to the substitutions of Zn^2+ and Li+for Y^3+ in Y2Mo3O12 resulting in the preferential growth.The investigation in laser scattering, transmittance and low thermal expansion behaviors of Y2-x(ZnLi)xMo3O12 could pave a way to weaken the strong-laser attack from the high-power laser weapon and the other.
文摘Electronic,structural and optical properties of the cubic perovskite CsCaF_(3) are calculated by using the full potential linearized augmented plane wave(FP-LAPW)plus local orbitals method with generalized gradient approximation(GGA)in the framework of the density functional theory.The calculated lattice constant is in good agreement with the experimental result.The electronic band structure shows that the fundamental band gap is wide and indirect at(Γ–R)point.The contribution of the different bands is analyzed from the total and partial density of states curves.The charge density plots show strong ionic bonding in Cs-F,and ionic and weak covalent bonding between Ca and F.Calculations of the optical spectra,viz.,the dielectric function,optical reflectivity,absorption coefficient,real part of optical conductivity,refractive index,extinction coefficient and electron energy loss,are performed for the energy range 0–30 eV.
文摘AD = 1 position-dependent mass approach to constructing nonlinear quantum states for a modified Coulomb potential is used to generate Gazeau–Klauder coherent states. It appears that their energy eigenvalues are scaled down by the quantum number and the nonlinearity coefficient. We study the basic properties of these states, which are found to be undefined on the whole complex plane, and some details of their revival structure are discussed.
文摘We have explored the magnetic properties of Nitrogen doped cubic MgO using the full potential linearized augmented plane wave (FP-LAPW) method. The unit cell has 128 atoms, and two Nitrogen atoms are placed in the positions of oxygen sites. This corresponds to 3.125% doping concentration. Our calculations predict that the ferromagnetic state, with a magnetic moment of about 1.0 μB per Nitrogen-dopant, is more favorable in energy than the nonmagnetic state, and the ferromagnetic correlations are influenced by the impurity bound state. The magnetic moment mainly arises from p orbital of Nitrogen which substitutes the Oxygen atom, with a little contribution from the Oxygen atoms surrounding Nitrogen atom. The resulting band structure and densities of states agree well with the recent theoretical works. The ferromagnetic ordering temperatures obtained from DFT simulations have been given in detail. Our results show that the pressure enhances the temperature in MgO:N.
文摘During the hydration process, the Ultra-fine Cements present specific physical and chemical characteristics; they are, very short setting time and high heat release. For special applications, such as rapid hardening and early high strength mortars or concretes, these characteristics can be considered advantageous. Some commercial products used for concrete reinforcement and repairs are the Rapid Hardening Mortars, these mortars must develop a time of setting up to 3 h and an initial compressive strength of about 3.5 MPa once the hardening of the paste is reached. The objective of the present research work is to use Ultra-fine Cement for the preparation of a series of different Rapid Hardening Mortars (with different percentages of Ultra-fine Cement), these mortars required the addition of a polycarboxylate-base specification F Superplasticizer. It was observed that the optimum water/cement (W/C) ratio for the hydration of the Ultra-fine Cements is W/C = 0.385. The Ultra-fine Cements were obtained by the High Energy Ball-milling technique at laboratory scale, 90% of the Particle Size Distribution is below 11 μm and the Blaine Specific Surface Area is over 9000 cm^2/g.
文摘We perform self-consistent ab-initio calculations to study the structural and electronic properties of zinc blende ZnS, ZnO and their alloy. The full-potential muffin-tin orbitals (FP-LMTO) method was employed within density functional theory (DFT) based on local density Approximation (LDA), and generalized gradient approximation (GGA). We analyze composition effect on lattice constants, bulk modulus, band gap and effective mass of the electron. Using the approach of Zunger and coworkers, the microscopic origins of band gap bowing have been detailed and explained. Discussions will be given in comparison with results obtained with other available theoretical and experimental results.
文摘The effect of Zn2+ ions on the microstructure and electrical properties of Mn1-xZnxFe2O4 (0.0 ≤ x ≤ 0.5 in steps of 0.1) through a solid state reaction has been investigated. The structural properties have been investigated using X-ray diffraction (XRD) technique. The XRD analysis confirms that all samples are in a single-phase cubic spinel structure. The experimental lattice parameter (aexp) was decreased with increasing Zn2+ ions substitution due to the smaller ionic radius of zinc content. The crystallite size (t) of samples was estimated by Scherrer’s formula and found in the range (90 - 115 nm). Dc electrical resistivity and Seebeck voltage coefficients were measured as a function of temperature using the two probe methods. The temperature variation of resistivity exhibits two breaks, each break referring to a change in the activation energy. The Curie temperature estimated from dc resistivity measurement decreases with increasing Zn2+ ions. Seebeck voltage coefficient measurements reveal n-type conduction for all samples.
文摘Comparative investigations of gas sensing characteristics of Fe2O3 in both thin film as well as bulk forms have been performed. Thin film sensors were realized by first depositing Fe films using electron-beam evaporation followed by thermal oxidation. Bulk sensors in the form of pellets were prepared by cold pressing commercial Fe2O3 powder with subsequent sintering. Both thin film and bulk Fe2O3 sensors exhibited a selective and reversible response characteristics towards H2S with maximum response at an operating temperature of 250°C and 200°C, respectively. A negligible response towards other interfering gases was observed. Thin film sensors exhibited an enhanced response in comparison to that of pellets.
文摘To produce high-purity silica sand usable for glass making, the present study was carried out. The objective of this work was to increase the silicon dioxide (SiO<sub>2</sub>) content to at least 99% using a simple process without chemical input. The raw sand samples were taken from the Ivorian sedimentary basin, from Maféré and Assinie areas, C<span style="white-space:nowrap;">ô</span>te d’Ivoire. Wet sieving and attrition technique were used for the purification process. The results from the energy dispersive spectrometer (EDS) analyses of the raw and treated samples show a significant increase of silica content and a significant reduction of impurities. The silica content (SiO<sub>2</sub>) of the sand of Maféré increases from 98.73% ± 0.15% to 99.92% ± 0.05%. And the sand of Assinie increased from 98.82% ± 0.67% in the raw samples to 99.44% ± 0.27% after treatment. The rate of iron oxide and alumina is reduced in these sands. Moreover, the sand of Maféré contains 53.2% of grains of size lower than 500 microns and that of Assinie contains 29.30%. Regarding the chemical composition of these purified sands, they meet the standard BS2975s, the American Ceramic Society and the National Bureau of Standards for window glass making.
文摘In this work, the effects of boundaries conditions and truncation errors in the distribution of minority carriers in the semiconductor are studied. It is a one-dimensional digital study of a polycrystalline silicon solar cell under polychromatic illumination in a dynamic state. Starting from the Boltzmann equation of semiconductors, the author establishes the general equation of particle transport. Assumptions made on the latter allow it to give the equation of distribution of minority carriers in a general way in its case to be studied. This dimensioned distribution equation reveals the parameters of influences on the distribution of carriers. It obtains a partial derivative equation for the carrier distribution function. The boundary conditions are then discretized to order one and then to order two. By considering boundary conditions and the nature of the carriers, the author numerically resolves the discretized general equation by assessing the influence of the nature of the boundary conditions and truncation errors and the influence of the discretization step on the density of the charge carriers by setting certain parameters and varying others. The work ends with a conclusion and logical follow-up to this work.