期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
(Sm/Eu/Tm)^(3+) doped tantalum semiconductor system for photovoltaic and electrochemical functionality amplification
1
作者 Shaan Bibi Jaffri Khuram Shahzad Ahmad +1 位作者 Isaac Abrahams Ibrahim A.A 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第8期1586-1594,I0007,共10页
This work reports the synthesis,characterization,and energy focused applications of the novel lanthanides co-doped tantalum pentoxide hetero-system(Sm^(3+)-Eu^(3+)-Tm^(3+):Ta_(2)O_(5)).Ln^(3+)-doped Ta_(2)O_(5) expres... This work reports the synthesis,characterization,and energy focused applications of the novel lanthanides co-doped tantalum pentoxide hetero-system(Sm^(3+)-Eu^(3+)-Tm^(3+):Ta_(2)O_(5)).Ln^(3+)-doped Ta_(2)O_(5) express excellent opto-electronic features reflected by the narrow band gap energy of 3.87 eV.Different vibrations confirm the presence of Ta-O-Ta and Ta-O bonds.The synthesized system possesses orthorhombic geometry with 59.46 nm particle size.With the smoother and compact morphology,the synthesized material succeeds in augmenting the performance of different systems aimed at energy applications.Fully ambient perovskite solar cell device fabricated with the Ln^(3+)-doped Ta_(2)O_(5) as an electron transport layer excels in achieving an efficiency and fill factor of 14.17% and 76% under artificial sun.This device was marked by the negligible hysteresis behavior showing profound photovoltaic performance.The electrochemical activity of the Ln^(3+)-doped Ta_(2)O_(5) decorated electrode was evaluated for electrical charge storage potential with pseudocapacitive behavior,With the highest specific capacitance of 355.39 F/g and quicker ionic diffusion rate,the designed electrode excels conventionally used materials.Electro-catalysis of water with Ln^(3+)-doped Ta_(2)O_(5) material indicates its capacity for H_(2) production with the lowest overpotential and Tafel slope values of 148 and 121.2 mV/dec,while the O_(2) generation is comparatively lower.With the stable electrochemical output,this rare earth modified material has the potential to replace conventionally used environmentally perilous and costly materials. 展开更多
关键词 Lanthanide doping Rare earth materials Perovskite solar cells SUPERCAPACITORS Water splitting
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部