Classification of edge-on galaxies is important to astronomical studies due to our Milky Way galaxy being an edge-on galaxy.Edge-on galaxies pose a problem to classification due to their less overall brightness levels...Classification of edge-on galaxies is important to astronomical studies due to our Milky Way galaxy being an edge-on galaxy.Edge-on galaxies pose a problem to classification due to their less overall brightness levels and smaller numbers of pixels.In the current work,a novel technique for the classification of edge-on galaxies has been developed.This technique is based on the mathematical treatment of galaxy brightness data from their images.A special treatment for galaxies’brightness data is developed to enhance faint galaxies and eliminate adverse effects of high brightness backgrounds as well as adverse effects of background bright stars.A novel slimness weighting factor is developed to classify edge-on galaxies based on their slimness.The technique has the capacity to be optimized for different catalogs with different brightness levels.In the current work,the developed technique is optimized for the EFIGI catalog and is trained using a set of 1800 galaxies from this catalog.Upon classification of the full set of 4458 galaxies from the EFIGI catalog,an accuracy of 97.5% has been achieved,with an average processing time of about 0.26 seconds per galaxy on an average laptop.展开更多
文摘Classification of edge-on galaxies is important to astronomical studies due to our Milky Way galaxy being an edge-on galaxy.Edge-on galaxies pose a problem to classification due to their less overall brightness levels and smaller numbers of pixels.In the current work,a novel technique for the classification of edge-on galaxies has been developed.This technique is based on the mathematical treatment of galaxy brightness data from their images.A special treatment for galaxies’brightness data is developed to enhance faint galaxies and eliminate adverse effects of high brightness backgrounds as well as adverse effects of background bright stars.A novel slimness weighting factor is developed to classify edge-on galaxies based on their slimness.The technique has the capacity to be optimized for different catalogs with different brightness levels.In the current work,the developed technique is optimized for the EFIGI catalog and is trained using a set of 1800 galaxies from this catalog.Upon classification of the full set of 4458 galaxies from the EFIGI catalog,an accuracy of 97.5% has been achieved,with an average processing time of about 0.26 seconds per galaxy on an average laptop.