A new kind of weight-Ar^λ3 (λ1, λ2, Ω)-weight is used to prove the local and global integral inequalities for conjugate A-harmonic tensors, which can be regarded as generalizations of the classical results. Some...A new kind of weight-Ar^λ3 (λ1, λ2, Ω)-weight is used to prove the local and global integral inequalities for conjugate A-harmonic tensors, which can be regarded as generalizations of the classical results. Some applications of the above results to quasiregular mappings are given.展开更多
We obtain a new inequality for weakly (K1,K2)-quasiregular mappings by using the McShane extension method. This inequality can be used to derive the self-improving regularity of (K1, K2)-Quasiregular Mappings.
基金Supported by the Natural Science Foundation of Hebei Province(07M003)the Doctoral Fund of Hebei Provincial Commission of Education(B2004103)
文摘A new kind of weight-Ar^λ3 (λ1, λ2, Ω)-weight is used to prove the local and global integral inequalities for conjugate A-harmonic tensors, which can be regarded as generalizations of the classical results. Some applications of the above results to quasiregular mappings are given.
基金Special Fund of Mathematical Study of Natural Science Foundation of Hebei Province(07M003)Doctoral Foundation of Hebei Province(B2004103)Foundation of the Department of Education of Hunan Province(06C516)
文摘We obtain a new inequality for weakly (K1,K2)-quasiregular mappings by using the McShane extension method. This inequality can be used to derive the self-improving regularity of (K1, K2)-Quasiregular Mappings.