Skeletal stem and progenitor cells(SSPCs) perform bone maintenance and repair. With age, they produce fewer osteoblasts and more adipocytes leading to a loss of skeletal integrity. The molecular mechanisms that underl...Skeletal stem and progenitor cells(SSPCs) perform bone maintenance and repair. With age, they produce fewer osteoblasts and more adipocytes leading to a loss of skeletal integrity. The molecular mechanisms that underlie this detrimental transformation are largely unknown. Single-cell RNA sequencing revealed that Notch signaling becomes elevated in SSPCs during aging. To examine the role of increased Notch activity, we deleted Nicastrin, an essential Notch pathway component, in SSPCs in vivo. Middle-aged conditional knockout mice displayed elevated SSPC osteo-lineage gene expression, increased trabecular bone mass, reduced bone marrow adiposity, and enhanced bone repair. Thus, Notch regulates SSPC cell fate decisions, and moderating Notch signaling ameliorates the skeletal aging phenotype, increasing bone mass even beyond that of young mice. Finally, we identified the transcription factor Ebf3 as a downstream mediator of Notch signaling in SSPCs that is dysregulated with aging, highlighting it as a promising therapeutic target to rejuvenate the aged skeleton.展开更多
Comprehensive studies identify motor neuron spectrum disorders including amyotrophic lateral sclerosis(ALS)as globally rising fatal disorders with the highest prevalence in aging populations,influenced by ethnicity an...Comprehensive studies identify motor neuron spectrum disorders including amyotrophic lateral sclerosis(ALS)as globally rising fatal disorders with the highest prevalence in aging populations,influenced by ethnicity and ancestry(GBD 2016 Motor Neuron Disease Colla borators,2018).While~10% of diagnoses involve a family history(fALS),most cases are considered sporadic(sALS).However,population-based studies suggest that even cases without a common index mutation impart heritability(Ryan et al.,2019),indicating a crucial role of rare and as yet unknown genetic denominators.展开更多
Embryonic stem cells (ESCs) maintain their cellular identity through the systematic regulation of master transcription factors and chromatin remodeling complexes. Recent work has shown that the unusually large-scale...Embryonic stem cells (ESCs) maintain their cellular identity through the systematic regulation of master transcription factors and chromatin remodeling complexes. Recent work has shown that the unusually large-scale enhancers-namely super-enhancers (SEs), on which BRD4, a member of the bromodomain and extraterminal domain (BET) family is highly enriched-could regulate pluripotency-related transcrip- tion factors. Moreover, inhibition of BRD4 binding on SEs has been shown to induce the differentiation of ESCs. However, the underlying mechanism of BRD4 inhibition-mediated stern cell differentiation remains elusive. Here we show that both mouse and human ESCs lose their capacity for self-renewal upon treat- ment with JQ1, a selective inhibitor of BET family including BRD4, with rapid suppression of pluripotency-associated genes. Notably, a high concentration of JQI could selectively eliminate ESCs via apoptosis, without affecting the functionality of differentiated somatic cells from ESCs, suggesting that inhibition of BET may have a beneficial effect on the development of pluripotent stem cell-based cell therapy.展开更多
Oct4 is a key component of the pluripotency regulatory network,and its reciprocal interaction with Cdx2 has been shown to be a determinant of either the self-renewal of embryonic stem cells(ESCs)or their differentiati...Oct4 is a key component of the pluripotency regulatory network,and its reciprocal interaction with Cdx2 has been shown to be a determinant of either the self-renewal of embryonic stem cells(ESCs)or their differentiation into trophoblast.Oct4 of maternal origin is postulated to play critical role in defining totipotency and inducing pluripotency during embryonic development.However,the genetic elimination of maternal Oct4 using a Cre-lox approach in mouse revealed that the establishment of totipotency in maternal Oct4–depleted embryos was not affected,and that these embryos could complete full-term development without any obvious defect.These results indicate that Oct4 is not essential for the initiation of pluripotency,in contrast to its critical role in maintaining pluripotency.This conclusion is further supported by the formation of Oct4-GFP–and Nanog-expressing inner cell masses(ICMs)in embryos with complete inactivation of both maternal and zygotic Oct4 expression and the reprogramming of fibroblasts into fully pluripotent cells by Oct4-deficient oocytes.展开更多
基金supported by a K08AR069099 (P.L.) from the National Institutes of Health/ National Institute of Arthritis and Musculoskeletal and Skinsupported by an R01AG056169 and a gift by the Patricia and Frank Zarb Family+5 种基金supported by an F30AG072834 from the National Institutes of Health/National Institute on Agingfunded through NIH Grant S10OD010751 and the Preclinical Imaging Laboratorypartially supported by the Laura and Isaac Perlmutter Cancer Center Support Grant NIH/NCI 5P30CA016087NIBIB Biomedical Technology Resource Center Grant NIH P41 EB017183supported in part by grant P30CA016087 from the National Institutes of Health/National Cancer Institutepartially supported by the Cancer Center Support Grant P30CA016087 at the Laura and Isaac Perlmutter Cancer Center。
文摘Skeletal stem and progenitor cells(SSPCs) perform bone maintenance and repair. With age, they produce fewer osteoblasts and more adipocytes leading to a loss of skeletal integrity. The molecular mechanisms that underlie this detrimental transformation are largely unknown. Single-cell RNA sequencing revealed that Notch signaling becomes elevated in SSPCs during aging. To examine the role of increased Notch activity, we deleted Nicastrin, an essential Notch pathway component, in SSPCs in vivo. Middle-aged conditional knockout mice displayed elevated SSPC osteo-lineage gene expression, increased trabecular bone mass, reduced bone marrow adiposity, and enhanced bone repair. Thus, Notch regulates SSPC cell fate decisions, and moderating Notch signaling ameliorates the skeletal aging phenotype, increasing bone mass even beyond that of young mice. Finally, we identified the transcription factor Ebf3 as a downstream mediator of Notch signaling in SSPCs that is dysregulated with aging, highlighting it as a promising therapeutic target to rejuvenate the aged skeleton.
基金The lab of AK obtained support from the Interdisciplinary Center for Clinical Research(IZKF)Jena(MSPProject ID:MSP09)+2 种基金DG and MJA B were supported by the Circular Vision project,which has received funding from the European Union's Horizon 2020 research and innovation program(Grant agreement No.899417)the Ministerio de Ciencia e Innovoción,Spain(Grant No.PID2020-119715GB-I00/AEI/10.13039/501100011033)the Instituto de Salud CarlosⅢ,Infrastructure of Precision Medicine associated with Science and Technology(IMPaCT)of the Strategic Action in Health(iDATAMP)(to MJAB)。
文摘Comprehensive studies identify motor neuron spectrum disorders including amyotrophic lateral sclerosis(ALS)as globally rising fatal disorders with the highest prevalence in aging populations,influenced by ethnicity and ancestry(GBD 2016 Motor Neuron Disease Colla borators,2018).While~10% of diagnoses involve a family history(fALS),most cases are considered sporadic(sALS).However,population-based studies suggest that even cases without a common index mutation impart heritability(Ryan et al.,2019),indicating a crucial role of rare and as yet unknown genetic denominators.
基金supported by the National Research Foundation of Korea(NRF-2016K1A3A1A61006005,NRF-2016R1A2B3011860,NRF-2016R1A5A2012284,and NRF-2017M3C7A1047640)
文摘Embryonic stem cells (ESCs) maintain their cellular identity through the systematic regulation of master transcription factors and chromatin remodeling complexes. Recent work has shown that the unusually large-scale enhancers-namely super-enhancers (SEs), on which BRD4, a member of the bromodomain and extraterminal domain (BET) family is highly enriched-could regulate pluripotency-related transcrip- tion factors. Moreover, inhibition of BRD4 binding on SEs has been shown to induce the differentiation of ESCs. However, the underlying mechanism of BRD4 inhibition-mediated stern cell differentiation remains elusive. Here we show that both mouse and human ESCs lose their capacity for self-renewal upon treat- ment with JQ1, a selective inhibitor of BET family including BRD4, with rapid suppression of pluripotency-associated genes. Notably, a high concentration of JQI could selectively eliminate ESCs via apoptosis, without affecting the functionality of differentiated somatic cells from ESCs, suggesting that inhibition of BET may have a beneficial effect on the development of pluripotent stem cell-based cell therapy.
基金This research was supported by the Max Planck Society,DFG grant SI 1695/1-2(SPP1356)NIH grant R01HD059946-01 from the Eunice Kennedy Shriver National Institute of Child Health&Human Development.We thank Areti Malapetsas for final editing。
文摘Oct4 is a key component of the pluripotency regulatory network,and its reciprocal interaction with Cdx2 has been shown to be a determinant of either the self-renewal of embryonic stem cells(ESCs)or their differentiation into trophoblast.Oct4 of maternal origin is postulated to play critical role in defining totipotency and inducing pluripotency during embryonic development.However,the genetic elimination of maternal Oct4 using a Cre-lox approach in mouse revealed that the establishment of totipotency in maternal Oct4–depleted embryos was not affected,and that these embryos could complete full-term development without any obvious defect.These results indicate that Oct4 is not essential for the initiation of pluripotency,in contrast to its critical role in maintaining pluripotency.This conclusion is further supported by the formation of Oct4-GFP–and Nanog-expressing inner cell masses(ICMs)in embryos with complete inactivation of both maternal and zygotic Oct4 expression and the reprogramming of fibroblasts into fully pluripotent cells by Oct4-deficient oocytes.