Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplish...Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplished by steady-state numerical hydrodynamics and deep knowledge of the field of flow.Because of the interaction between mainstream and purge flow contributing supplementary losses in the stage,non-axisymmetric endwalls are highly susceptible to the inception of purge flow exit compared to the flat and any advantage rapidly vanishes.The conclusions reveal that the supreme endwall pattern could yield a lowering of the gross pressure loss at the design stage and is related to the size of the top-loss location being productively lowered.This has led to diminished global thermal exchange lowered in the passage of the vane alone.The reverse flow adjacent to the suction side corner of the endwall is migrated farther from the vane surface,as the deviated pressure spread on the endwall accelerates the flow and progresses the reverse flow core still downstream.The depleted association between the tornado-like vortex and the corner vortex adjacent to the suction side corner of the endwall is the dominant mechanism of control in the contoured end wall.In this publication,we show that the non-axisymmetric endwall contouring by selective numerical shape change method at most prominent locations is advantageous in lowering the thermal load in turbines to augment the net heat flux reduction as well as the aerodynamic performance using multi-objective optimization.展开更多
This study presents endwall hydrodynamics and heat transfer in a linear turbine cascade at Re 5×105 at low and high intensities of turbulence.Results are numerically predicted using the standard SST model and Re...This study presents endwall hydrodynamics and heat transfer in a linear turbine cascade at Re 5×105 at low and high intensities of turbulence.Results are numerically predicted using the standard SST model and Reθ-γtransition model as well as using the high-resolution LES separately.The major secondary flow components,comprising the horseshoe,corner,and passage vortices are recognized and the impact on heat or mass transfer is investigated.The complicated behavior of turbine passage secondary flow generation and establishment are impacted by the perspective of boundary layer attributes and inflow turbulence.The passage vortex concerning the latest big leading-edge vane is generated by the enlargement of the circulation developed at the first instance adjacent to the pressure side becomes powerful and mixes with other vortex systems during its migration towards the suction side.The study conclusions reveal that substantial enhancements are attained on the endwall surface,for the entire spanwise blade extension on the pressure surface,and in the highly 3-D region close to the endwall on the suction surface.The forecasted suction surface thermal exchange depicts great conformity with the measurement values and precisely reproduces the enhanced thermal exchange owing to the development and lateral distribution of the secondary flows along the midspan of the blade passage downstream.The impacts of the different secondary flow structures on the endwall thermal exchange are described in depth.展开更多
Kansei engineering, also known as k, unsei ergonomics or emotional engineering, aims at analysing and incorporating customer's feeling and demands into product function and product design. Founded in the late 1970's...Kansei engineering, also known as k, unsei ergonomics or emotional engineering, aims at analysing and incorporating customer's feeling and demands into product function and product design. Founded in the late 1970's, kansei is now considered as a key consumer-oriented technology for new product development. This paper described a system called FuzEmotion for the purpose of assessing the kansei aspects of a product by considering design attributes of a product. Fuzzy logic is used to represent kansei words and process fuzzy input. The system has been successfully implemented to ascertain gender inclination of a mobile phone. Principal parameters of a mobile phone are considered, i.e., length, width, thickness, and mass. The system can inform gender inclination of a mobile phone with accuracy up to 76 %. This is based on a set of 92 mobile phone samples from the five major mobile phone manufacturers.展开更多
This paper aims to assess the role of Cu on Al-Si-Mg alloys, in a range of 0 - 5 wt%, qualitatively on microstructure, defect formation, in terms of porosity, and strength in the as-cast conditions. The ternary system...This paper aims to assess the role of Cu on Al-Si-Mg alloys, in a range of 0 - 5 wt%, qualitatively on microstructure, defect formation, in terms of porosity, and strength in the as-cast conditions. The ternary system of Al-Si-Mg, using the A356 alloy as a base material, were cast using the gradient solidification technique;applying three different solidification rates to produce directional solidified samples with a variety of microstructure coarsenesses. Microstructural observations reveal that as the Cu levels in the alloys are increased, the amounts of intermetallic compounds as well as the Cu concentration in the α-Al matrix are increased. Furthermore, the level of porosity is unaffected and the tensile strength is improved at the expense of ductility.展开更多
Ceramics can keep their mechanical characteristics up to 2 000℃ or higher.In this paper,A model to predict ultimate strength of continuous fiber-reinforced brittle matrix composites is developed.A statistical theor...Ceramics can keep their mechanical characteristics up to 2 000℃ or higher.In this paper,A model to predict ultimate strength of continuous fiber-reinforced brittle matrix composites is developed.A statistical theory for the strength of a uni-axially fiber-reinforced brittle matrix composite is presented.Also a semi-empirical frictional heating method for estimating in-situ interfacial shear in fiber-reinforced ceramic matrix composites was improved.Local uneven fiber packing variation as well as uneven micro-damage during fatigue can be expected to have effects on the composites:generation of frictional heating,thermal gradients,and residual stresses around local fiber breaks.This study examined those engineering interests by the finite element method.展开更多
Quantum-classical correspondence is affirmed via performing Wigner function and a classical-quantum chaotic system containing random variables.The classical-quantum system is transformed into a Kolmogorov model for fo...Quantum-classical correspondence is affirmed via performing Wigner function and a classical-quantum chaotic system containing random variables.The classical-quantum system is transformed into a Kolmogorov model for force and energy analysis.Combining different forces,the system is divided into two categories:conservative and non-conservative,revealing the mechanical characteristic of the classical-quantum system.The Casimir power,an analysis tool,is employed to find the key factors governing the orbital trajectory and the energy cycle of the system.Detailed analyses using the Casimir power and an energy transformation uncover the causes of the different dynamic behaviors,especially chaos.For the corresponding classical Hamiltonian system when Planck’s constant h→0,the supremum bound of the system is derived analytically.Difference between the classical-quantum system and the classical Hamiltonian system is displayed through trajectories and energies.Quantum-classical correspondences are further demonstrated by comparing phase portrait,kinetic,potential and Casimir energies of the two systems.展开更多
A design project was used in junior level mechanical design course to challenge the students' creativity skills. Beside the theoretical foundation of the course subject, the students were introduced to several profes...A design project was used in junior level mechanical design course to challenge the students' creativity skills. Beside the theoretical foundation of the course subject, the students were introduced to several professional skills such as: decision making tools, technical review meetings, interaction with customers, and teamwork skills. The design challenge was to develop a bike rack to meet a list of technical and marketing constraints. Details of the project requirements are presented with a brief overview of the main project mentoring tools. Students' creativity is discussed through two samples of the student work. It was noticed that, the basic creativity skills of the students can be improved by using some of the training tools, however, the students vary in their response to this training.展开更多
The present and future energy requirements of mankind can be fulfilled with sustained research and development efforts by global scientists.The purpose of this review paper is to provide an overview of the fundamental...The present and future energy requirements of mankind can be fulfilled with sustained research and development efforts by global scientists.The purpose of this review paper is to provide an overview of the fundamentals,recent advancements on Lithium and non-Lithium electrochemical rechargeable battery systems,and their future prospects.The initial part of this review paper is dedicated to the advancement and challenges faced by the conventional rechargeable batteries,such as lead-acid,Ni-Cd and Ni-MH batteries.The subsequent section of this review focuses on an in-depth analysis of two major categories of rechargeable batteries,namely lithium-based rechargeable battery systems and alternative non-Lithium rechargeable battery systems.The working principle,construction,and a few important research progress on Li-ion,Li-O_(2),Li-CO_(2) and Li-S batteries have been highlighted.The recent progress and challenges of the alternate batteries such as Na-ion,Na-S,Mg-ion,K-ion,Al-ion,Al-air,Zn-ion and Zn-air are also discussed in this review.The large gap between theoretical and practical electrochemical values for the alternate battery system must be filled by adopting a series of design architectures followed by modern instrumentation for developing next-generation batteries in a sustainable and efficient way.展开更多
The majority of nonlinear stochastic systems can be expressed as the quasi-Hamiltonian systems in science and engineering. Moreover, the corresponding Hamiltonian system offers two concepts of integrability and resona...The majority of nonlinear stochastic systems can be expressed as the quasi-Hamiltonian systems in science and engineering. Moreover, the corresponding Hamiltonian system offers two concepts of integrability and resonance that can fully describe the global relationship among the degrees-of-freedom(DOFs) of the system. In this work, an effective and promising approximate semi-analytical method is proposed for the steady-state response of multi-dimensional quasi-Hamiltonian systems. To be specific, the trial solution of the reduced Fokker–Plank–Kolmogorov(FPK) equation is obtained by using radial basis function(RBF) neural networks. Then, the residual generated by substituting the trial solution into the reduced FPK equation is considered, and a loss function is constructed by combining random sampling technique. The unknown weight coefficients are optimized by minimizing the loss function through the Lagrange multiplier method. Moreover, an efficient sampling strategy is employed to promote the implementation of algorithms. Finally, two numerical examples are studied in detail, and all the semi-analytical solutions are compared with Monte Carlo simulations(MCS) results. The results indicate that the complex nonlinear dynamic features of the system response can be captured through the proposed scheme accurately.展开更多
Hysteresis widely exists in civil structures,and dissipates the mechanical energy of systems.Research on the random vibration of hysteretic systems,however,is still insufficient,particularly when the excitation is non...Hysteresis widely exists in civil structures,and dissipates the mechanical energy of systems.Research on the random vibration of hysteretic systems,however,is still insufficient,particularly when the excitation is non-Gaussian.In this paper,the radial basis function(RBF)neural network(RBF-NN)method is adopted as a numerical method to investigate the random vibration of the Bouc-Wen hysteretic system under the Poisson white noise excitations.The solution to the reduced generalized Fokker-PlanckKolmogorov(GFPK)equation is expressed in terms of the RBF-NNs with the Gaussian activation functions,whose weights are determined by minimizing the loss function of the reduced GFPK equation residual and constraint associated with the normalization condition.A steel fiber reinforced ceramsite concrete(SFRCC)column loaded by the Poisson white noise is studied as an example to illustrate the solution process.The effects of several important parameters of both the system and the excitation on the stochastic response are evaluated,and the obtained results are compared with those obtained by the Monte Carlo simulations(MCSs).The numerical results show that the RBF-NN method can accurately predict the stationary response with a considerable high computational efficiency.展开更多
Brain signal analysis plays a significant role in attaining data related to motor activities.The parietal region of the brain plays a vital role in muscular movements.This approach aims to demonstrate a unique techniq...Brain signal analysis plays a significant role in attaining data related to motor activities.The parietal region of the brain plays a vital role in muscular movements.This approach aims to demonstrate a unique technique to identify an ideal region of the human brain that generates signals responsible for muscular movements;perform statistical analysis to provide an absolute characterization of the signal and validate the obtained results using a prototype arm.This can enhance the practical implementation of these frequency extractions for future neuro-prosthetic applications and the characterization of neurological diseases like Parkinson’s disease(PD).To play out this handling method,electroencepha-logram(EEG)signals are gained while the subject is performing different wrist and elbow movements.Then,the frontal brain signals and just the parietal signals are separated from the obtained EEG signal by utilizing a band pass filter.Then,feature extraction is carried out using Fast Fourier Transform(FFT).Subse-quently,the extraction process is done by Daubechies(db4)and Haar wavelet(db1)in MATLAB and classified using the Levenberg-Marquardt Algorithm.The results of the frequency changes that occurred during various wrist move-ments in the parietal region are compared with the frequency changes that occurred in frontal EEG signals.This proposed algorithm also uses the deep learn-ing pattern analysis network to evaluate the matching sequence for each action that takes place.Maximum accuracy of 97.2%and maximum error range of 0.6684%are achieved during the analysis.Results of this research confirm that the Levenberg-Marquardt algorithm,along with the newly developed deep learn-ing hybrid PatternNet,provides a more accurate range of frequency changes than any other classifier used in previous works of literature.Based on the analysis,the peak-to-peak value is used to define the threshold for the prototype arm,which performs all the intended degrees of freedom(DOF),verifying the results.These results would aid the specialists in their decision-making by facilitating the ana-lysis and interpretation of brain signals in the field of neuroscience,specifically in tremor analysis in PD.展开更多
To benefit tissue removal and postoperative rehabilitation,increased efficiency and accuracy and reduced operating force are strongly required in the osteotomy.A novel elliptical vibration cutting(EVC)has been introdu...To benefit tissue removal and postoperative rehabilitation,increased efficiency and accuracy and reduced operating force are strongly required in the osteotomy.A novel elliptical vibration cutting(EVC)has been introduced for bone cutting compared with conventional cutting(CC)in this paper.With the assistance of high-speed microscope imaging and the dynamometer,the material removals of cortical bone and their cutting forces from two cutting regimes were recorded and analysed comprehensively,which clearly demonstrated the chip morphology improvement and the average cutting force reduction in the EVC process.It also revealed that the elliptical vibration of the cutting tool could promote fracture propagation along the shear direction.These new findings will be of important theoretical and practical values to apply the innovative EVC process to the surgical procedures of the osteotomy.展开更多
This work presents multi-fidelity multi-objective infill-sampling surrogate-assisted optimization for airfoil shape optimization.The optimization problem is posed to maximize the lift and drag coefficient ratio subjec...This work presents multi-fidelity multi-objective infill-sampling surrogate-assisted optimization for airfoil shape optimization.The optimization problem is posed to maximize the lift and drag coefficient ratio subject to airfoil geometry constraints.Computational Fluid Dynamic(CFD)and XFoil tools are used for high and low-fidelity simulations of the airfoil to find the real objective function value.A special multi-objective sub-optimization problem is proposed for multiple points infill sampling exploration to improve the surrogate model constructed.To validate and further assess the proposed methods,a conventional surrogate-assisted optimization method and an infill sampling surrogate-assisted optimization criterion are applied with multi-fidelity simulation,while their numerical performance is investigated.The results obtained show that the proposed technique is the best performer for the demonstrated airfoil shape optimization.According to this study,applying multi-fidelity with multi-objective infill sampling criteria for surrogate-assisted optimization is a powerful design tool.展开更多
A radiative heat transfer mathematical model for a one-dimensional long furnace was set up in a through-type roller-hearth furnace (TTRHF) in compact strip production (CSP). To accurately predict the heat exchange...A radiative heat transfer mathematical model for a one-dimensional long furnace was set up in a through-type roller-hearth furnace (TTRHF) in compact strip production (CSP). To accurately predict the heat exchange in the furnace, modeling of the complex gas energy-balance equation in volume zones was considered, and the heat transfer model of heating slabs and wall lines was coupled with the radiative heat transfer model to identify the surface zonal temperature. With numerical simulation, the temperature fields of gas, slabs, and wall lines in the furnace under one typical working condition were carefully accounted and analyzed. The fundamental theory for analyzing the thermal process in TI'RI-IF was provided.展开更多
Micro milling is a flexible and economical method to fabricate micro components with three-dimensional geometry features over a wide range of engineering materials. But the surface roughness and micro topography alway...Micro milling is a flexible and economical method to fabricate micro components with three-dimensional geometry features over a wide range of engineering materials. But the surface roughness and micro topography always limit the performance of the machined micro components. This paper presents a surface generation simulation in micro end milling considering both axial and radial tool runout. Firstly, a surface generation model is established based on the geometry of micro milling cutter. Secondly, the influence of the runout in axial and radial directions on the surface generation are investigated and the surface roughness prediction is realized. It is found that the axial runout has a significant influence on the surface topography generation. Furthermore, the influence of axial runout on the surface micro topography was studied quantitatively, and a critical axial runout is given for variable feed per tooth to generate specific surface topography. Finally, the proposed model is validated by means of experiments and a good correlation is obtained. The proposed surface generation model o ers a basis for designing and optimizing surface parameters of functional machined surfaces.展开更多
An improved shooting method was presented for solving the natural convention boundary layer equations, with a coupling of the velocity field to the temperature field. The numerical results are consistent with the appr...An improved shooting method was presented for solving the natural convention boundary layer equations, with a coupling of the velocity field to the temperature field. The numerical results are consistent with the approximate solution obtained by former researchers.展开更多
Short tool life and rapid tool wear in micromachining of hard-to-machine materials remain a barrier to the process being economically viable. In this study, standard procedures and conditions set by the ISO for tool l...Short tool life and rapid tool wear in micromachining of hard-to-machine materials remain a barrier to the process being economically viable. In this study, standard procedures and conditions set by the ISO for tool life testing in milling were used to analyze the wear of tungsten carbide micro-end-milling tools through slot milling conducted on titanium alloy Ti-6 Al-4 V. Tool wear was characterized by flank wear rate,cutting-edge radius change, and tool volumetric change. The effect of machining parameters, such as cutting speed and feedrate, on tool wear was investigated with reference to surface roughness and geometric accuracy of the finished workpiece. Experimental data indicate different modes of tool wear throughout machining, where nonuniform flank wear and abrasive wear are the dominant wear modes. High cutting speed and low feedrate can reduce the tool wear rate and improve the tool life during micromachining.However, the low feedrate enhances the plowing effect on the cutting zone, resulting in reduced surface quality and leading to burr formation and premature tool failure. This study concludes with a proposal of tool rejection criteria for micro-milling of Ti-6 Al-4 V.展开更多
A theoretical investigation was done for the generalized Berman problem, which arises in steady laminar flow of an incompressible viscous fluid along a channel with accelerating rigid porous walls. The existence of mu...A theoretical investigation was done for the generalized Berman problem, which arises in steady laminar flow of an incompressible viscous fluid along a channel with accelerating rigid porous walls. The existence of multiple solutions and its conditions were established by taking into account exponentially small terms in matched asymptotic expansion. The correctness of the analytical predictions was verified by numerical results.展开更多
文摘Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplished by steady-state numerical hydrodynamics and deep knowledge of the field of flow.Because of the interaction between mainstream and purge flow contributing supplementary losses in the stage,non-axisymmetric endwalls are highly susceptible to the inception of purge flow exit compared to the flat and any advantage rapidly vanishes.The conclusions reveal that the supreme endwall pattern could yield a lowering of the gross pressure loss at the design stage and is related to the size of the top-loss location being productively lowered.This has led to diminished global thermal exchange lowered in the passage of the vane alone.The reverse flow adjacent to the suction side corner of the endwall is migrated farther from the vane surface,as the deviated pressure spread on the endwall accelerates the flow and progresses the reverse flow core still downstream.The depleted association between the tornado-like vortex and the corner vortex adjacent to the suction side corner of the endwall is the dominant mechanism of control in the contoured end wall.In this publication,we show that the non-axisymmetric endwall contouring by selective numerical shape change method at most prominent locations is advantageous in lowering the thermal load in turbines to augment the net heat flux reduction as well as the aerodynamic performance using multi-objective optimization.
文摘This study presents endwall hydrodynamics and heat transfer in a linear turbine cascade at Re 5×105 at low and high intensities of turbulence.Results are numerically predicted using the standard SST model and Reθ-γtransition model as well as using the high-resolution LES separately.The major secondary flow components,comprising the horseshoe,corner,and passage vortices are recognized and the impact on heat or mass transfer is investigated.The complicated behavior of turbine passage secondary flow generation and establishment are impacted by the perspective of boundary layer attributes and inflow turbulence.The passage vortex concerning the latest big leading-edge vane is generated by the enlargement of the circulation developed at the first instance adjacent to the pressure side becomes powerful and mixes with other vortex systems during its migration towards the suction side.The study conclusions reveal that substantial enhancements are attained on the endwall surface,for the entire spanwise blade extension on the pressure surface,and in the highly 3-D region close to the endwall on the suction surface.The forecasted suction surface thermal exchange depicts great conformity with the measurement values and precisely reproduces the enhanced thermal exchange owing to the development and lateral distribution of the secondary flows along the midspan of the blade passage downstream.The impacts of the different secondary flow structures on the endwall thermal exchange are described in depth.
文摘Kansei engineering, also known as k, unsei ergonomics or emotional engineering, aims at analysing and incorporating customer's feeling and demands into product function and product design. Founded in the late 1970's, kansei is now considered as a key consumer-oriented technology for new product development. This paper described a system called FuzEmotion for the purpose of assessing the kansei aspects of a product by considering design attributes of a product. Fuzzy logic is used to represent kansei words and process fuzzy input. The system has been successfully implemented to ascertain gender inclination of a mobile phone. Principal parameters of a mobile phone are considered, i.e., length, width, thickness, and mass. The system can inform gender inclination of a mobile phone with accuracy up to 76 %. This is based on a set of 92 mobile phone samples from the five major mobile phone manufacturers.
基金The authors would like to thank the Swedish Knowledge Foundation,Stena Aluminium AB and CompTech AB for the financial support
文摘This paper aims to assess the role of Cu on Al-Si-Mg alloys, in a range of 0 - 5 wt%, qualitatively on microstructure, defect formation, in terms of porosity, and strength in the as-cast conditions. The ternary system of Al-Si-Mg, using the A356 alloy as a base material, were cast using the gradient solidification technique;applying three different solidification rates to produce directional solidified samples with a variety of microstructure coarsenesses. Microstructural observations reveal that as the Cu levels in the alloys are increased, the amounts of intermetallic compounds as well as the Cu concentration in the α-Al matrix are increased. Furthermore, the level of porosity is unaffected and the tensile strength is improved at the expense of ductility.
文摘Ceramics can keep their mechanical characteristics up to 2 000℃ or higher.In this paper,A model to predict ultimate strength of continuous fiber-reinforced brittle matrix composites is developed.A statistical theory for the strength of a uni-axially fiber-reinforced brittle matrix composite is presented.Also a semi-empirical frictional heating method for estimating in-situ interfacial shear in fiber-reinforced ceramic matrix composites was improved.Local uneven fiber packing variation as well as uneven micro-damage during fatigue can be expected to have effects on the composites:generation of frictional heating,thermal gradients,and residual stresses around local fiber breaks.This study examined those engineering interests by the finite element method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61873186 and 11902220)the Natural Science Foundation of Tianjin City of China(Grant No.17JCZDJC38300)+1 种基金the Provincial Foundation for Excellent Young Talents of Colleges and Universities of Anhui Province of China(Grant No.GXYQ2017014)the Anhui University Humanities and Social Sciences Research Project of China(Grant No.SK2019A0116).
文摘Quantum-classical correspondence is affirmed via performing Wigner function and a classical-quantum chaotic system containing random variables.The classical-quantum system is transformed into a Kolmogorov model for force and energy analysis.Combining different forces,the system is divided into two categories:conservative and non-conservative,revealing the mechanical characteristic of the classical-quantum system.The Casimir power,an analysis tool,is employed to find the key factors governing the orbital trajectory and the energy cycle of the system.Detailed analyses using the Casimir power and an energy transformation uncover the causes of the different dynamic behaviors,especially chaos.For the corresponding classical Hamiltonian system when Planck’s constant h→0,the supremum bound of the system is derived analytically.Difference between the classical-quantum system and the classical Hamiltonian system is displayed through trajectories and energies.Quantum-classical correspondences are further demonstrated by comparing phase portrait,kinetic,potential and Casimir energies of the two systems.
文摘A design project was used in junior level mechanical design course to challenge the students' creativity skills. Beside the theoretical foundation of the course subject, the students were introduced to several professional skills such as: decision making tools, technical review meetings, interaction with customers, and teamwork skills. The design challenge was to develop a bike rack to meet a list of technical and marketing constraints. Details of the project requirements are presented with a brief overview of the main project mentoring tools. Students' creativity is discussed through two samples of the student work. It was noticed that, the basic creativity skills of the students can be improved by using some of the training tools, however, the students vary in their response to this training.
基金the Education Department of the Government of Gujarat for providing fellowships under SHODH (Sc Heme of Developing High-Quality Researchresearch,Ref No:2021013725)for researchthe financial support received from Science and Engineering Research Board,Department of Science and Technology,Government of India (CRG/2022/008719)。
文摘The present and future energy requirements of mankind can be fulfilled with sustained research and development efforts by global scientists.The purpose of this review paper is to provide an overview of the fundamentals,recent advancements on Lithium and non-Lithium electrochemical rechargeable battery systems,and their future prospects.The initial part of this review paper is dedicated to the advancement and challenges faced by the conventional rechargeable batteries,such as lead-acid,Ni-Cd and Ni-MH batteries.The subsequent section of this review focuses on an in-depth analysis of two major categories of rechargeable batteries,namely lithium-based rechargeable battery systems and alternative non-Lithium rechargeable battery systems.The working principle,construction,and a few important research progress on Li-ion,Li-O_(2),Li-CO_(2) and Li-S batteries have been highlighted.The recent progress and challenges of the alternate batteries such as Na-ion,Na-S,Mg-ion,K-ion,Al-ion,Al-air,Zn-ion and Zn-air are also discussed in this review.The large gap between theoretical and practical electrochemical values for the alternate battery system must be filled by adopting a series of design architectures followed by modern instrumentation for developing next-generation batteries in a sustainable and efficient way.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12072118)the Natural Science Funds for Distinguished Young Scholar of the Fujian Province, China (Grant No. 2021J06024)the Project for Youth Innovation Fund of Xiamen, China (Grant No. 3502Z20206005)。
文摘The majority of nonlinear stochastic systems can be expressed as the quasi-Hamiltonian systems in science and engineering. Moreover, the corresponding Hamiltonian system offers two concepts of integrability and resonance that can fully describe the global relationship among the degrees-of-freedom(DOFs) of the system. In this work, an effective and promising approximate semi-analytical method is proposed for the steady-state response of multi-dimensional quasi-Hamiltonian systems. To be specific, the trial solution of the reduced Fokker–Plank–Kolmogorov(FPK) equation is obtained by using radial basis function(RBF) neural networks. Then, the residual generated by substituting the trial solution into the reduced FPK equation is considered, and a loss function is constructed by combining random sampling technique. The unknown weight coefficients are optimized by minimizing the loss function through the Lagrange multiplier method. Moreover, an efficient sampling strategy is employed to promote the implementation of algorithms. Finally, two numerical examples are studied in detail, and all the semi-analytical solutions are compared with Monte Carlo simulations(MCS) results. The results indicate that the complex nonlinear dynamic features of the system response can be captured through the proposed scheme accurately.
基金the National Natural Science Foundation of China(No.12072118)the Natural Science Funds for Distinguished Young Scholar of Fujian Province of China(No.2021J06024)the Project for Youth Innovation Fund of Xiamen of China(No.3502Z20206005)。
文摘Hysteresis widely exists in civil structures,and dissipates the mechanical energy of systems.Research on the random vibration of hysteretic systems,however,is still insufficient,particularly when the excitation is non-Gaussian.In this paper,the radial basis function(RBF)neural network(RBF-NN)method is adopted as a numerical method to investigate the random vibration of the Bouc-Wen hysteretic system under the Poisson white noise excitations.The solution to the reduced generalized Fokker-PlanckKolmogorov(GFPK)equation is expressed in terms of the RBF-NNs with the Gaussian activation functions,whose weights are determined by minimizing the loss function of the reduced GFPK equation residual and constraint associated with the normalization condition.A steel fiber reinforced ceramsite concrete(SFRCC)column loaded by the Poisson white noise is studied as an example to illustrate the solution process.The effects of several important parameters of both the system and the excitation on the stochastic response are evaluated,and the obtained results are compared with those obtained by the Monte Carlo simulations(MCSs).The numerical results show that the RBF-NN method can accurately predict the stationary response with a considerable high computational efficiency.
文摘Brain signal analysis plays a significant role in attaining data related to motor activities.The parietal region of the brain plays a vital role in muscular movements.This approach aims to demonstrate a unique technique to identify an ideal region of the human brain that generates signals responsible for muscular movements;perform statistical analysis to provide an absolute characterization of the signal and validate the obtained results using a prototype arm.This can enhance the practical implementation of these frequency extractions for future neuro-prosthetic applications and the characterization of neurological diseases like Parkinson’s disease(PD).To play out this handling method,electroencepha-logram(EEG)signals are gained while the subject is performing different wrist and elbow movements.Then,the frontal brain signals and just the parietal signals are separated from the obtained EEG signal by utilizing a band pass filter.Then,feature extraction is carried out using Fast Fourier Transform(FFT).Subse-quently,the extraction process is done by Daubechies(db4)and Haar wavelet(db1)in MATLAB and classified using the Levenberg-Marquardt Algorithm.The results of the frequency changes that occurred during various wrist move-ments in the parietal region are compared with the frequency changes that occurred in frontal EEG signals.This proposed algorithm also uses the deep learn-ing pattern analysis network to evaluate the matching sequence for each action that takes place.Maximum accuracy of 97.2%and maximum error range of 0.6684%are achieved during the analysis.Results of this research confirm that the Levenberg-Marquardt algorithm,along with the newly developed deep learn-ing hybrid PatternNet,provides a more accurate range of frequency changes than any other classifier used in previous works of literature.Based on the analysis,the peak-to-peak value is used to define the threshold for the prototype arm,which performs all the intended degrees of freedom(DOF),verifying the results.These results would aid the specialists in their decision-making by facilitating the ana-lysis and interpretation of brain signals in the field of neuroscience,specifically in tremor analysis in PD.
基金Supported by National Natural Science Foundation of China (Grant Nos.52005199 and 42241149)Shenzhen Fundamental Research Program (Grant Nos.JCYJ20200109150425085 and JCYJ20220818102601004)+2 种基金Shenzhen Science and Technology Program (Grant Nos.JSGG20201103100001004 and JSGG20220831105800001)Research Development Program of China (Grant No.2022YFB4602502)Knowledge Innovation Program of Wuhan-Basic Research (Grant No.2022010801010203)。
文摘To benefit tissue removal and postoperative rehabilitation,increased efficiency and accuracy and reduced operating force are strongly required in the osteotomy.A novel elliptical vibration cutting(EVC)has been introduced for bone cutting compared with conventional cutting(CC)in this paper.With the assistance of high-speed microscope imaging and the dynamometer,the material removals of cortical bone and their cutting forces from two cutting regimes were recorded and analysed comprehensively,which clearly demonstrated the chip morphology improvement and the average cutting force reduction in the EVC process.It also revealed that the elliptical vibration of the cutting tool could promote fracture propagation along the shear direction.These new findings will be of important theoretical and practical values to apply the innovative EVC process to the surgical procedures of the osteotomy.
基金The authors are grateful for the support from Khon Kaen University Scholarship for ASEAN and GMS Countries’Personnel of Academic Year and the National Research Council of Thailand(N42A650549).
文摘This work presents multi-fidelity multi-objective infill-sampling surrogate-assisted optimization for airfoil shape optimization.The optimization problem is posed to maximize the lift and drag coefficient ratio subject to airfoil geometry constraints.Computational Fluid Dynamic(CFD)and XFoil tools are used for high and low-fidelity simulations of the airfoil to find the real objective function value.A special multi-objective sub-optimization problem is proposed for multiple points infill sampling exploration to improve the surrogate model constructed.To validate and further assess the proposed methods,a conventional surrogate-assisted optimization method and an infill sampling surrogate-assisted optimization criterion are applied with multi-fidelity simulation,while their numerical performance is investigated.The results obtained show that the proposed technique is the best performer for the demonstrated airfoil shape optimization.According to this study,applying multi-fidelity with multi-objective infill sampling criteria for surrogate-assisted optimization is a powerful design tool.
文摘A radiative heat transfer mathematical model for a one-dimensional long furnace was set up in a through-type roller-hearth furnace (TTRHF) in compact strip production (CSP). To accurately predict the heat exchange in the furnace, modeling of the complex gas energy-balance equation in volume zones was considered, and the heat transfer model of heating slabs and wall lines was coupled with the radiative heat transfer model to identify the surface zonal temperature. With numerical simulation, the temperature fields of gas, slabs, and wall lines in the furnace under one typical working condition were carefully accounted and analyzed. The fundamental theory for analyzing the thermal process in TI'RI-IF was provided.
基金Supported by Engineering and Physical Sciences Research Council(Grant No.EP/M020657/1)National Natural Science Foundation of China(Grant No.51505107)Project of Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(Grant No.HIT.NSRIF.2017029)
文摘Micro milling is a flexible and economical method to fabricate micro components with three-dimensional geometry features over a wide range of engineering materials. But the surface roughness and micro topography always limit the performance of the machined micro components. This paper presents a surface generation simulation in micro end milling considering both axial and radial tool runout. Firstly, a surface generation model is established based on the geometry of micro milling cutter. Secondly, the influence of the runout in axial and radial directions on the surface generation are investigated and the surface roughness prediction is realized. It is found that the axial runout has a significant influence on the surface topography generation. Furthermore, the influence of axial runout on the surface micro topography was studied quantitatively, and a critical axial runout is given for variable feed per tooth to generate specific surface topography. Finally, the proposed model is validated by means of experiments and a good correlation is obtained. The proposed surface generation model o ers a basis for designing and optimizing surface parameters of functional machined surfaces.
基金The work is financially supported by the National Natural Science Foundations of China (No.50476083).
文摘An improved shooting method was presented for solving the natural convention boundary layer equations, with a coupling of the velocity field to the temperature field. The numerical results are consistent with the approximate solution obtained by former researchers.
基金the Engineering and Physical Sciences Research Council (EP/M020657/1) for the support for this work
文摘Short tool life and rapid tool wear in micromachining of hard-to-machine materials remain a barrier to the process being economically viable. In this study, standard procedures and conditions set by the ISO for tool life testing in milling were used to analyze the wear of tungsten carbide micro-end-milling tools through slot milling conducted on titanium alloy Ti-6 Al-4 V. Tool wear was characterized by flank wear rate,cutting-edge radius change, and tool volumetric change. The effect of machining parameters, such as cutting speed and feedrate, on tool wear was investigated with reference to surface roughness and geometric accuracy of the finished workpiece. Experimental data indicate different modes of tool wear throughout machining, where nonuniform flank wear and abrasive wear are the dominant wear modes. High cutting speed and low feedrate can reduce the tool wear rate and improve the tool life during micromachining.However, the low feedrate enhances the plowing effect on the cutting zone, resulting in reduced surface quality and leading to burr formation and premature tool failure. This study concludes with a proposal of tool rejection criteria for micro-milling of Ti-6 Al-4 V.
基金This work was financially supported by the National Natural Science Foundations of China (No.50476083).
文摘A theoretical investigation was done for the generalized Berman problem, which arises in steady laminar flow of an incompressible viscous fluid along a channel with accelerating rigid porous walls. The existence of multiple solutions and its conditions were established by taking into account exponentially small terms in matched asymptotic expansion. The correctness of the analytical predictions was verified by numerical results.