This paper deals with a design approach of a gait training machine based on a quantitative gait analysis. The proposed training machine is composed of a body weight support device and a cable-driven parallel robot. Th...This paper deals with a design approach of a gait training machine based on a quantitative gait analysis. The proposed training machine is composed of a body weight support device and a cable-driven parallel robot. This paper is focused on the cable-driven robot, which controls the pose of the lower limb through an orthosis placed on the patient's leg. The cable robot reproduces a normal gait movement through the motion of the orthosis. A motion capture system is used to perform the quantitative analysis of a normal gait, which will be used as an input to the inverse dynamic model of the cable robot. By means of an optimization algorithm, the optimal design parameters, which minimize the tensions in the cables, are determined. Two constraints are considered, i.e., a non-negative tension in the cables at all times, and a free cable/end-effector collision. Once the optimal solution is computed, a power analysis is carried out in order to size the robot actuators. The proposed approach can be easily extended for the design study of a similar type of cable robots.展开更多
An assessment of the human motion repeatability for three selected Activities of Daily Living(ADL)is performed in this paper.These exercises were prescribed by an occupational therapist for the upper limb rehabilitati...An assessment of the human motion repeatability for three selected Activities of Daily Living(ADL)is performed in this paper.These exercises were prescribed by an occupational therapist for the upper limb rehabilitation.The movement patterns of five participants,recorded using a Qualisys motion capture system,are compared based on the Analysis of Variance(ANOVA)method.This survey is motivated by the need to find the appropriate task workspace of a 6-degrees of freedom cable-driven parallel robot for upper limb rehabilitation,which is able to reproduce the three selected exercises.This comparison is performed to justify,whether or not,there is enough similarity between the participants’gestures,and so a single reference trajectory can be adopted as the robot-prescribed workspace.Using the results of the comparative study,an optimization process of the sought robot design is carried out,where the structure size and the cable tensions simultaneously minimized.展开更多
文摘This paper deals with a design approach of a gait training machine based on a quantitative gait analysis. The proposed training machine is composed of a body weight support device and a cable-driven parallel robot. This paper is focused on the cable-driven robot, which controls the pose of the lower limb through an orthosis placed on the patient's leg. The cable robot reproduces a normal gait movement through the motion of the orthosis. A motion capture system is used to perform the quantitative analysis of a normal gait, which will be used as an input to the inverse dynamic model of the cable robot. By means of an optimization algorithm, the optimal design parameters, which minimize the tensions in the cables, are determined. Two constraints are considered, i.e., a non-negative tension in the cables at all times, and a free cable/end-effector collision. Once the optimal solution is computed, a power analysis is carried out in order to size the robot actuators. The proposed approach can be easily extended for the design study of a similar type of cable robots.
基金supported by the"PHC Utiquc"program of the French Ministry of Foreign Affairs and Ministry of Higher Education,Research and Innovation and the Tunisian Ministry of Higher Education and Scientific Research.P.n°19G1121the support of the Erasmus+KA 107 program.
文摘An assessment of the human motion repeatability for three selected Activities of Daily Living(ADL)is performed in this paper.These exercises were prescribed by an occupational therapist for the upper limb rehabilitation.The movement patterns of five participants,recorded using a Qualisys motion capture system,are compared based on the Analysis of Variance(ANOVA)method.This survey is motivated by the need to find the appropriate task workspace of a 6-degrees of freedom cable-driven parallel robot for upper limb rehabilitation,which is able to reproduce the three selected exercises.This comparison is performed to justify,whether or not,there is enough similarity between the participants’gestures,and so a single reference trajectory can be adopted as the robot-prescribed workspace.Using the results of the comparative study,an optimization process of the sought robot design is carried out,where the structure size and the cable tensions simultaneously minimized.