期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Electromagnetic Expansion and Fragmentation of Hollow Aluminium 5052 Tube
1
作者 Hitesh Choudhary Chiradeep Gupta +3 位作者 Nirupama Tiwari Tanmay Kolge Rajeev Kapoor Archana Sharma 《Journal of Minerals and Materials Characterization and Engineering》 2020年第6期421-439,共19页
Electromagnetic forming is a high-speed forming technology by which hollow profiles can be compressed or expanded. It is done with a pulsed magnetic field to apply Lorentz’ forces at electrically conductive material.... Electromagnetic forming is a high-speed forming technology by which hollow profiles can be compressed or expanded. It is done with a pulsed magnetic field to apply Lorentz’ forces at electrically conductive material. Electromagnetic hollow tube expansion is limited by the fragmentation tendency. This work attempts to use a combination of analytical and computational approach to compute the net tangential stress during tube expansion. A simplified analytical framework to estimate the temporal evolution of plastic stresses present in aluminium alloy AA5052 at low and high applied magnetic pressures is developed based upon dynamic imaging. The time resolved images captured using current synchronised high speed camera record the overall dimensional changes of the tube that is validated by multi-physics simulation of expansion process. Imaging of hollow tube expansions at two selected peak currents has been carried out at various current levels in the range 76 - 160 kA. The direct visualisation of the increase in the tube diameter at two current levels provided a comparison of the developing net tangential stresses in the hollow tube during the undamaged and fragmented expansion. Imaging of tube expansion also facilitates the estimation of the strain rate experienced by the tube and was in the range of ~1700 s<sup>-1</sup> to ~1200 s<sup>-1</sup>. The propensity of fragmentation was found to be due to the level and duration of generated tangential stresses above the yield stress during expansion of the aluminium tubes. Presented study provides a mean of exploiting the enhanced formability of aluminium alloys using electromagnetic forming. 展开更多
关键词 Electromagnetic Forming Aluminium Alloys High-Speed Imaging
下载PDF
A novel approach to correlate heat transfer and pressure fluctuation in gas-solid spouted bed 被引量:1
2
作者 P.K. Mollick P.S. Goswamib +2 位作者 M. Krishnana P.K. Vijayanc A.B. Panditd 《Particuology》 SCIE EI CAS CSCD 2019年第1期26-34,共9页
Statistical analysis of pressure fluctuations in spouted beds has been used as a well-established diagnostic tool to determine bed and flow characteristics because of its smooth operation. However, in many recent and ... Statistical analysis of pressure fluctuations in spouted beds has been used as a well-established diagnostic tool to determine bed and flow characteristics because of its smooth operation. However, in many recent and conventional applications of spouted beds such as drying, coal gasification, catalytic conversion, biomass treatment, and chemical vapor deposition, direct estimation of the heat transfer rate from the solid bed to the gas or vice versa has proven to be difficult. A variance and spectral analysis of pressure fluctuation is extended here to characterize the heat transfer phenomena in a spouted bed. In the present study, zirconia and alumina were used as the bed materials, and argon and nitrogen were used as the spouting gases. Experiments were conducted at various heating rates for different superficial gas velocities for a range of temperatures up to 300 °C. Significant changes in the gas density and viscosity with different extents of heat transfer were observed to affect the momentum diffusivity and gas–particle interaction, which in turn led to local pressure fluctuations, causing the bed to behave differently. In the present work, a novel approach is proposed to establish a link between local pressure fluctuation and the extent of heat transfer in the bed. This method shows potential for correlation of the statistics of pressure fluctuation with the thermal properties of individual solids and gases. Thus, the technique can be extended to many industrial applications for the indirect estimation of the extent of heat transfer and prediction of unknown thermal properties of products in solids or gases. 展开更多
关键词 Spouted BED Heat transfer Pressure FLUCTUATION STATISTICAL ANALYSIS Power spectral density ANALYSIS Thermal properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部