The remarkable functionality of biological systems in detecting and adapting to various environmental conditions has inspired the design of the latest electronics and robots with advanced features.This review focuses ...The remarkable functionality of biological systems in detecting and adapting to various environmental conditions has inspired the design of the latest electronics and robots with advanced features.This review focuses on intelligent bio-inspired strategies for developing soft bioelectronics and robotics that can accommodate nanocomposite adhesives and integrate them into biological surfaces.The underlying principles of the material and structural design of nanocomposite adhesives were investigated for practical applications with excellent functionalities,such as soft skin-attachable health care sensors,highly stretchable adhesive electrodes,switchable adhesion,and untethered soft robotics.In addition,we have discussed recent progress in the development of effective fabrication methods for micro/nanostructures for integration into devices,presenting the current challenges and prospects.展开更多
基金supported by the R&D program of the Ministry of Trade,Industry&Energy(No.20016252,Development of a hybrid-type high-performance multimodal electronic skin sensor and a scalable module for robot manipulation)supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(Ministry of Science and ICT,MSIT)(No.RS-2023-00214236)+1 种基金the National Research Council of Science&Technology(NST)grant by the Korea government(MSIT)(No.CRC230231-000)the Korea Evaluation Institute of Industrial Technology(KEIT)grant funded by the Korean government(MOTIE,No.RS-2022-00154781,Development of large-area wafer-level flexible/stretchable hybrid sensor platform technology for form factor-free highly integrated convergence sensors).
文摘The remarkable functionality of biological systems in detecting and adapting to various environmental conditions has inspired the design of the latest electronics and robots with advanced features.This review focuses on intelligent bio-inspired strategies for developing soft bioelectronics and robotics that can accommodate nanocomposite adhesives and integrate them into biological surfaces.The underlying principles of the material and structural design of nanocomposite adhesives were investigated for practical applications with excellent functionalities,such as soft skin-attachable health care sensors,highly stretchable adhesive electrodes,switchable adhesion,and untethered soft robotics.In addition,we have discussed recent progress in the development of effective fabrication methods for micro/nanostructures for integration into devices,presenting the current challenges and prospects.