The paper presents the utilization of the adaptive Delaunay triangulation in the finite element modeling of two dimensional crack propagation problems, including detailed description of the proposed procedure which co...The paper presents the utilization of the adaptive Delaunay triangulation in the finite element modeling of two dimensional crack propagation problems, including detailed description of the proposed procedure which consists of the Delaunay triangulation algorithm and an adaptive remeshing technique. The adaptive remeshing technique generates small elements around crack tips and large elements in the other regions. The resulting stress intensity factors and simulated crack propagation behavior are used to evaluate the effectiveness of the procedure. Three sample problems of a center cracked plate, a single edge cracked plate and a compact tension specimen, are simulated and their results assessed.展开更多
Almost without exception literature data and modeling effort are understandably devoted to water as the sprayed liquid since it constitutes the most common liquid used in spray drying applications. In selected applica...Almost without exception literature data and modeling effort are understandably devoted to water as the sprayed liquid since it constitutes the most common liquid used in spray drying applications. In selected applications, however, the liquid making up the solution or suspension may not be water. The objective of this work is to examine the differences in flow patterns, thermal behavior and drying rates caused by different liquids having different thermo-physical properties spray into a spray dryer using a computational fluid dynamic model.Numerical experiments were carried out for water (base case), ethyl alcohol and isopropyl alcohol-the latter two as model non-aqueous liquids. The chamber geometry was cylinder type with a co-current axial pressure nozzle and also an axial central exit so that the configuration is two dimensional and axi-symmetric. It is shown that the liquid properties can have major influence on the thermal field, droplet trajectories, residence times and overall evaporation capacity when all parameters of the problem are held fixed. Deviations from the single phase turbulent airflow in the same chamber without spray are different for the three liquids examined.展开更多
Microstructure evolution during tempering of quenched steel was studied via dilatometric experiments. Temperature ranges of transformation were determined by a relative dilation curve. The thermal expansion coefficien...Microstructure evolution during tempering of quenched steel was studied via dilatometric experiments. Temperature ranges of transformation were determined by a relative dilation curve. The thermal expansion coefficient of quenched steel was defined as a function of temperature. The transformation expansion is determined by subtracting thermal expansion from a measured diameter dilation curve. A kinetic equation based on tempering parameter was proposed to predict the microstructure evolution fraction of martensite and bainite of Ni3.5CrMoV and C45 steel. The kinetic equation was used in an in-house FEM code. The internal stress evolution of a quenched generator rotor was investigated.展开更多
The Nickel base Superalloys are the most famous complicated and useable of Superalloys to make hot zone components of the gas turbines. The complicated dimensional tolerances, specially at the root of the blade show i...The Nickel base Superalloys are the most famous complicated and useable of Superalloys to make hot zone components of the gas turbines. The complicated dimensional tolerances, specially at the root of the blade show importance of grinding processes at the production of blades root. The prediction of the effect of machining parameters on the soundness of component surface strengthening for reaching to a suitable surface finishing and avoiding from crack formation at the work part during machining operation often is not easy and feasible so needs to more industrial investigation. This research is about frame 5 blade designed by GE and made from Superalloy IN738LC has been investigated. The formation of a plastically deformed and heat affected zone during grinding of Superalloy IN738LC with a high depth of cut but slow work speed (creep feed grinding) was investigated. Parameters such as work speed, depth of cut and radial dressing speed have been considered as variables and their effects have been studied. During experimental performed, the voltage and current of motor measured and power and special energy calculated. Some samples heat-treated (of the 1176°C for 1 hr under neutral argon gas and cooling rate of 15°C /min up to 537°C and then air cooling) to study grains recrystallization. Other samples have been created from the roots of blades and then coated by Nickel to measure boundary layer micro-hardness. The results show that increasing work speed leads to increasing the use power. Increasing the depth of cut, by increasing material removal rate, and the radial dressing speed, by decreasing power, lead to decreasing special energy. The temperature created by grinding lead to decreasing plastic deformation and boundary layer formation. When the radial dressing speed changes from 1 to 0.6 u,m/rev and other parameters are kept unchanged the roughness of surface increases and the special energy decreases. Sufficient dressing is very essential in limiting the width of the molten zone to few micrometers. As a result, it was found that local melting at contact spots to be a rather common mechanism during grinding of superalloys, lead to so-called white layers which can easily be observed on metallographic cross sections.展开更多
Based on a level set model and the homogenization theory, an optimization al- gorithm for ?nding the optimal con?guration of the microstructure with speci?ed properties is proposed, which extends current resea...Based on a level set model and the homogenization theory, an optimization al- gorithm for ?nding the optimal con?guration of the microstructure with speci?ed properties is proposed, which extends current research on the level set method for structure topology opti- mization. The method proposed employs a level set model to implicitly describe the material interfaces of the microstructure and a Hamilton-Jacobi equation to continuously evolve the ma- terial interfaces until an optimal design is achieved. Meanwhile, the moving velocities of level set are obtained by conducting sensitivity analysis and gradient projection. Besides, how to handle the violated constraints is also discussed in the level set method for topological optimization, and a return-mapping algorithm is constructed. Numerical examples show that the method exhibits outstanding ?exibility of handling topological changes and ?delity of material interface represen- tation as compared with other conventional methods in literatures.展开更多
Using different proportional mixtures of Ni-coated MoS_2, TiC and pure Nipowders, new typical wear resistant and self-lubricant coatings were formed on low carbon steel bylaser cladding process. The microstractures an...Using different proportional mixtures of Ni-coated MoS_2, TiC and pure Nipowders, new typical wear resistant and self-lubricant coatings were formed on low carbon steel bylaser cladding process. The microstractures and phase composition of the composite coatings werestudied by SEM and XRD. The typical microstructure of the composite coating is composed ofmulti-sulfide phases including binary element sulfide and ternary element sulfide, gamma-Ni, TiC andMo_2C. Wear tests were carried out using an FALEX-6 type pin-on-disc machine. The frictioncoefficient and mass loss of three kinds of MoS_2/TiC/Ni laser clad coatings are lower than those ofquenched 45 steel, and the worn surfaces of the laser cladding coatings are very smooth. Because ofhigh hardness combined with low friction, the laser cladding composite coating with a mixture of 70percent Ni-coated MoS_2, 20 percent TiC and 10 percent pure Ni powder presents better wearbehaviors than the composite coating with other powder blends. The composition analysis of the wornsurface of GCrlS bearing steel shows that the transferred film from the laser cladding coating tothe opposite surface of GCrl5 bearing steel contains an amount of sulfide, which can change themicro-friction mechanism and lead to a reduced friction coefficient.展开更多
The structure of Fe-2.0%C alloy melt was investigated at 1580, 1560, 1540 and 1450℃ by using an X-ray diffractometer respectively. The results showed that with decreasing temperature, the average atoms of cluster, th...The structure of Fe-2.0%C alloy melt was investigated at 1580, 1560, 1540 and 1450℃ by using an X-ray diffractometer respectively. The results showed that with decreasing temperature, the average atoms of cluster, the coordination numbers, the correlation radius and the atom density increased, whereas the pre-peak of the structure factors curve remained almost at the same position. The appearance of the pre-peak indicated that the liquid structure and the solid structure of the Fe-2.0%C alloy were correlated.展开更多
Liquid indium's structure was studied at 280, 390, 550, 650, and 750 deg Crespectively by using an elevated temperature X-ray diffractometer, and its radial distributionfunction (RDF) at different temperatures was...Liquid indium's structure was studied at 280, 390, 550, 650, and 750 deg Crespectively by using an elevated temperature X-ray diffractometer, and its radial distributionfunction (RDF) at different temperatures was decomposed into 4 Gaussian peaks in the range of0.2-0.6nm. Positions of the decomposed Gaussian peaks were compared with the nearest and the secondnearest neighbor atomic distances, respectively. It is shown that the position of the firstdecomposed Gaussian peak is similar to the nearest neighbor atomic distance in liquid In at thecorresponding temperature, and that of the third decomposed Gaussian peak is similar to the secondnearest neighbor atomic distance. Moreover, the first and the third Gaussian peaks correspond to thefirst and the second atom shells of liquid In at the corresponding temperatures, respectively.Therefore, the position and the area of Gaussian peaks can represent the position and atom number ofcorresponding shells. Based on this result, short-range structural changes in liquid In wasstudied. It was found that the first and the second shells are close to the referred atom, and theatom number at the shells decreases with the increasing temperature from 280 to 750 deg C. Indifferent ranges of temperature, structural changes in the first and the second shells showdifferent features.展开更多
The characteristics of a vapor bubble within the thermal boundary layer were theoretically analyzed.The physical models accounting for the variation of ioterfacial tension and nuid density with tempera-ture were propo...The characteristics of a vapor bubble within the thermal boundary layer were theoretically analyzed.The physical models accounting for the variation of ioterfacial tension and nuid density with tempera-ture were proposed to investigate bubble interfaCe aspects and the fluid flow around the bubble. The analyses demonstrated that the variation in interfacial tension results in variations in the liquid-vapor interface shape and bubble dynamics, which may play a significant role in the departure process of a vapor bubble from a heated wall surface. Increasing temperature gradients in the boundary layer and the gravitational field induce a contact line contraction and correspondingly promotes bubble depar-ture. The simulation of liquid now around the bubble shows that natural convection dominates the flow for earth conditions; however, the thermocapillary forces provide the principal catalyst for bubble departure in a microgravity environment. The results indicate that both the vapor bubble contraction and the Marangoni flow may increase the heat transfer around the vapor bubble and may cause the bubble to mov away from the heating surface, further increasing heat transfer.展开更多
The statistical distributed source boundary point method (SDSBPM) put forward is applied to calculate the acoustic radiation from the random vibrating body. A detailed description of this method is presented. A test f...The statistical distributed source boundary point method (SDSBPM) put forward is applied to calculate the acoustic radiation from the random vibrating body. A detailed description of this method is presented. A test for the SDSBPM is carried out through the random vibrating sphere and the random vibrating cuboid. An experiment on the exterior acoustic radiation of a random vibrating sirnulation axial box of the lathe tool is performed in a semi-anechoic chamber.展开更多
文摘The paper presents the utilization of the adaptive Delaunay triangulation in the finite element modeling of two dimensional crack propagation problems, including detailed description of the proposed procedure which consists of the Delaunay triangulation algorithm and an adaptive remeshing technique. The adaptive remeshing technique generates small elements around crack tips and large elements in the other regions. The resulting stress intensity factors and simulated crack propagation behavior are used to evaluate the effectiveness of the procedure. Three sample problems of a center cracked plate, a single edge cracked plate and a compact tension specimen, are simulated and their results assessed.
文摘Almost without exception literature data and modeling effort are understandably devoted to water as the sprayed liquid since it constitutes the most common liquid used in spray drying applications. In selected applications, however, the liquid making up the solution or suspension may not be water. The objective of this work is to examine the differences in flow patterns, thermal behavior and drying rates caused by different liquids having different thermo-physical properties spray into a spray dryer using a computational fluid dynamic model.Numerical experiments were carried out for water (base case), ethyl alcohol and isopropyl alcohol-the latter two as model non-aqueous liquids. The chamber geometry was cylinder type with a co-current axial pressure nozzle and also an axial central exit so that the configuration is two dimensional and axi-symmetric. It is shown that the liquid properties can have major influence on the thermal field, droplet trajectories, residence times and overall evaporation capacity when all parameters of the problem are held fixed. Deviations from the single phase turbulent airflow in the same chamber without spray are different for the three liquids examined.
文摘Microstructure evolution during tempering of quenched steel was studied via dilatometric experiments. Temperature ranges of transformation were determined by a relative dilation curve. The thermal expansion coefficient of quenched steel was defined as a function of temperature. The transformation expansion is determined by subtracting thermal expansion from a measured diameter dilation curve. A kinetic equation based on tempering parameter was proposed to predict the microstructure evolution fraction of martensite and bainite of Ni3.5CrMoV and C45 steel. The kinetic equation was used in an in-house FEM code. The internal stress evolution of a quenched generator rotor was investigated.
文摘The Nickel base Superalloys are the most famous complicated and useable of Superalloys to make hot zone components of the gas turbines. The complicated dimensional tolerances, specially at the root of the blade show importance of grinding processes at the production of blades root. The prediction of the effect of machining parameters on the soundness of component surface strengthening for reaching to a suitable surface finishing and avoiding from crack formation at the work part during machining operation often is not easy and feasible so needs to more industrial investigation. This research is about frame 5 blade designed by GE and made from Superalloy IN738LC has been investigated. The formation of a plastically deformed and heat affected zone during grinding of Superalloy IN738LC with a high depth of cut but slow work speed (creep feed grinding) was investigated. Parameters such as work speed, depth of cut and radial dressing speed have been considered as variables and their effects have been studied. During experimental performed, the voltage and current of motor measured and power and special energy calculated. Some samples heat-treated (of the 1176°C for 1 hr under neutral argon gas and cooling rate of 15°C /min up to 537°C and then air cooling) to study grains recrystallization. Other samples have been created from the roots of blades and then coated by Nickel to measure boundary layer micro-hardness. The results show that increasing work speed leads to increasing the use power. Increasing the depth of cut, by increasing material removal rate, and the radial dressing speed, by decreasing power, lead to decreasing special energy. The temperature created by grinding lead to decreasing plastic deformation and boundary layer formation. When the radial dressing speed changes from 1 to 0.6 u,m/rev and other parameters are kept unchanged the roughness of surface increases and the special energy decreases. Sufficient dressing is very essential in limiting the width of the molten zone to few micrometers. As a result, it was found that local melting at contact spots to be a rather common mechanism during grinding of superalloys, lead to so-called white layers which can easily be observed on metallographic cross sections.
基金Project supported by the National Natural Science Foundation of China (Nos. 59805001 and 10332010) and the KeyScience and Technology Research Project of Ministry of Education of China (No. 104060).
文摘Based on a level set model and the homogenization theory, an optimization al- gorithm for ?nding the optimal con?guration of the microstructure with speci?ed properties is proposed, which extends current research on the level set method for structure topology opti- mization. The method proposed employs a level set model to implicitly describe the material interfaces of the microstructure and a Hamilton-Jacobi equation to continuously evolve the ma- terial interfaces until an optimal design is achieved. Meanwhile, the moving velocities of level set are obtained by conducting sensitivity analysis and gradient projection. Besides, how to handle the violated constraints is also discussed in the level set method for topological optimization, and a return-mapping algorithm is constructed. Numerical examples show that the method exhibits outstanding ?exibility of handling topological changes and ?delity of material interface represen- tation as compared with other conventional methods in literatures.
文摘Using different proportional mixtures of Ni-coated MoS_2, TiC and pure Nipowders, new typical wear resistant and self-lubricant coatings were formed on low carbon steel bylaser cladding process. The microstractures and phase composition of the composite coatings werestudied by SEM and XRD. The typical microstructure of the composite coating is composed ofmulti-sulfide phases including binary element sulfide and ternary element sulfide, gamma-Ni, TiC andMo_2C. Wear tests were carried out using an FALEX-6 type pin-on-disc machine. The frictioncoefficient and mass loss of three kinds of MoS_2/TiC/Ni laser clad coatings are lower than those ofquenched 45 steel, and the worn surfaces of the laser cladding coatings are very smooth. Because ofhigh hardness combined with low friction, the laser cladding composite coating with a mixture of 70percent Ni-coated MoS_2, 20 percent TiC and 10 percent pure Ni powder presents better wearbehaviors than the composite coating with other powder blends. The composition analysis of the wornsurface of GCrlS bearing steel shows that the transferred film from the laser cladding coating tothe opposite surface of GCrl5 bearing steel contains an amount of sulfide, which can change themicro-friction mechanism and lead to a reduced friction coefficient.
基金supported by the National Natural Science Foundations of China(No.50071028 and No.50231040).
文摘The structure of Fe-2.0%C alloy melt was investigated at 1580, 1560, 1540 and 1450℃ by using an X-ray diffractometer respectively. The results showed that with decreasing temperature, the average atoms of cluster, the coordination numbers, the correlation radius and the atom density increased, whereas the pre-peak of the structure factors curve remained almost at the same position. The appearance of the pre-peak indicated that the liquid structure and the solid structure of the Fe-2.0%C alloy were correlated.
基金This work was financially supported by the National Natural Science Foundation of China(No. 50071028) and Shandong Natural Scien
文摘Liquid indium's structure was studied at 280, 390, 550, 650, and 750 deg Crespectively by using an elevated temperature X-ray diffractometer, and its radial distributionfunction (RDF) at different temperatures was decomposed into 4 Gaussian peaks in the range of0.2-0.6nm. Positions of the decomposed Gaussian peaks were compared with the nearest and the secondnearest neighbor atomic distances, respectively. It is shown that the position of the firstdecomposed Gaussian peak is similar to the nearest neighbor atomic distance in liquid In at thecorresponding temperature, and that of the third decomposed Gaussian peak is similar to the secondnearest neighbor atomic distance. Moreover, the first and the third Gaussian peaks correspond to thefirst and the second atom shells of liquid In at the corresponding temperatures, respectively.Therefore, the position and the area of Gaussian peaks can represent the position and atom number ofcorresponding shells. Based on this result, short-range structural changes in liquid In wasstudied. It was found that the first and the second shells are close to the referred atom, and theatom number at the shells decreases with the increasing temperature from 280 to 750 deg C. Indifferent ranges of temperature, structural changes in the first and the second shells showdifferent features.
文摘The characteristics of a vapor bubble within the thermal boundary layer were theoretically analyzed.The physical models accounting for the variation of ioterfacial tension and nuid density with tempera-ture were proposed to investigate bubble interfaCe aspects and the fluid flow around the bubble. The analyses demonstrated that the variation in interfacial tension results in variations in the liquid-vapor interface shape and bubble dynamics, which may play a significant role in the departure process of a vapor bubble from a heated wall surface. Increasing temperature gradients in the boundary layer and the gravitational field induce a contact line contraction and correspondingly promotes bubble depar-ture. The simulation of liquid now around the bubble shows that natural convection dominates the flow for earth conditions; however, the thermocapillary forces provide the principal catalyst for bubble departure in a microgravity environment. The results indicate that both the vapor bubble contraction and the Marangoni flow may increase the heat transfer around the vapor bubble and may cause the bubble to mov away from the heating surface, further increasing heat transfer.
基金This work was supported by the National Natural Science Foundation of China (59575017)the Technical Developmental Foundation of Machinery Industry (97JA0104)
文摘The statistical distributed source boundary point method (SDSBPM) put forward is applied to calculate the acoustic radiation from the random vibrating body. A detailed description of this method is presented. A test for the SDSBPM is carried out through the random vibrating sphere and the random vibrating cuboid. An experiment on the exterior acoustic radiation of a random vibrating sirnulation axial box of the lathe tool is performed in a semi-anechoic chamber.