期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Thermodynamic Analysis and Optimization of Flat Plate Solar Collector Using TiO_(2)/Water Nanofluid
1
作者 Firas F.Qader Falah Z.Mohammed Barhm Mohamad 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第4期61-73,共13页
To research solar energy's efficiency and environmental benefits,the thermal efficiency,exergy,and entropy of solar collectors were calculated.The experiment involved two glass-topped collectors,fluid transfer tub... To research solar energy's efficiency and environmental benefits,the thermal efficiency,exergy,and entropy of solar collectors were calculated.The experiment involved two glass-topped collectors,fluid transfer tubes,and aluminum heat-absorbing plates.Glass wool insulation minimized heat loss.A 0.5% TiO_(2)/Water nanofluid was created using a mechanical and ultrasonic stirrer.Results showed that solar radiation increased thermal efficiency until midday,reaching 48.48% for water and 51.23% for the nanofluid.With increasing mass flow rates from 0.0045 kg/s to 0.02 kg/s,thermal efficiency improved from 16.26% to 47.37% for water and from 20.65% to 48.76% for the nanofluid.Filtered water provided 380 W and 395 W of energy in March and April,while the nanofluid increased it to 395 W and 415 W during these months.Mass flow generated energy,and the Reynolds number raised entropy.The noon exergy efficiency for nanofluids was 50%-55%,compared to 30% for water.At noon,the broken exergy measured 877.53 W for the nanofluid and 880.12 W for water.In Kirkuk,Iraq,the 0.5% TiO_(2)/Water nanofluid outperformed water in solar collectors. 展开更多
关键词 ENERGY EXERGY entropy generation NANOFLUID flat plate solar collector
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部