期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Hyperspectral Remote Sensing Image Classification Using Improved Metaheuristic with Deep Learning 被引量:1
1
作者 S.Rajalakshmi S.Nalini +1 位作者 Ahmed Alkhayyat Rami Q.Malik 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1673-1688,共16页
Remote sensing image(RSI)classifier roles a vital play in earth observation technology utilizing Remote sensing(RS)data are extremely exploited from both military and civil fields.More recently,as novel DL approaches ... Remote sensing image(RSI)classifier roles a vital play in earth observation technology utilizing Remote sensing(RS)data are extremely exploited from both military and civil fields.More recently,as novel DL approaches develop,techniques for RSI classifiers with DL have attained important breakthroughs,providing a new opportunity for the research and development of RSI classifiers.This study introduces an Improved Slime Mould Optimization with a graph convolutional network for the hyperspectral remote sensing image classification(ISMOGCN-HRSC)model.The ISMOGCN-HRSC model majorly concentrates on identifying and classifying distinct kinds of RSIs.In the presented ISMOGCN-HRSC model,the synergic deep learning(SDL)model is exploited to produce feature vectors.The GCN model is utilized for image classification purposes to identify the proper class labels of the RSIs.The ISMO algorithm is used to enhance the classification efficiency of the GCN method,which is derived by integrating chaotic concepts into the SMO algorithm.The experimental assessment of the ISMOGCN-HRSC method is tested using a benchmark dataset. 展开更多
关键词 Deep learning remote sensing images image classification slime mould optimization parameter tuning
下载PDF
Modified Buffalo Optimization with Big Data Analytics Assisted Intrusion Detection Model
2
作者 R.Sheeba R.Sharmila +1 位作者 Ahmed Alkhayyat Rami Q.Malik 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1415-1429,共15页
Lately,the Internet of Things(IoT)application requires millions of structured and unstructured data since it has numerous problems,such as data organization,production,and capturing.To address these shortcomings,big d... Lately,the Internet of Things(IoT)application requires millions of structured and unstructured data since it has numerous problems,such as data organization,production,and capturing.To address these shortcomings,big data analytics is the most superior technology that has to be adapted.Even though big data and IoT could make human life more convenient,those benefits come at the expense of security.To manage these kinds of threats,the intrusion detection system has been extensively applied to identify malicious network traffic,particularly once the preventive technique fails at the level of endpoint IoT devices.As cyberattacks targeting IoT have gradually become stealthy and more sophisticated,intrusion detection systems(IDS)must continually emerge to manage evolving security threats.This study devises Big Data Analytics with the Internet of Things Assisted Intrusion Detection using Modified Buffalo Optimization Algorithm with Deep Learning(IDMBOA-DL)algorithm.In the presented IDMBOA-DL model,the Hadoop MapReduce tool is exploited for managing big data.The MBOA algorithm is applied to derive an optimal subset of features from picking an optimum set of feature subsets.Finally,the sine cosine algorithm(SCA)with convolutional autoencoder(CAE)mechanism is utilized to recognize and classify the intrusions in the IoT network.A wide range of simulations was conducted to demonstrate the enhanced results of the IDMBOA-DL algorithm.The comparison outcomes emphasized the better performance of the IDMBOA-DL model over other approaches. 展开更多
关键词 Big data analytics internet of things SECURITY intrusion detection deep learning
下载PDF
Aquila Optimization with Machine Learning-Based Anomaly Detection Technique in Cyber-Physical Systems
3
作者 A.Ramachandran K.Gayathri +1 位作者 Ahmed Alkhayyat Rami Q.Malik 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期2177-2194,共18页
Cyber-physical system(CPS)is a concept that integrates every computer-driven system interacting closely with its physical environment.Internet-of-things(IoT)is a union of devices and technologies that provide universa... Cyber-physical system(CPS)is a concept that integrates every computer-driven system interacting closely with its physical environment.Internet-of-things(IoT)is a union of devices and technologies that provide universal interconnection mechanisms between the physical and digital worlds.Since the complexity level of the CPS increases,an adversary attack becomes possible in several ways.Assuring security is a vital aspect of the CPS environment.Due to the massive surge in the data size,the design of anomaly detection techniques becomes a challenging issue,and domain-specific knowledge can be applied to resolve it.This article develops an Aquila Optimizer with Parameter Tuned Machine Learning Based Anomaly Detection(AOPTML-AD)technique in the CPS environment.The presented AOPTML-AD model intends to recognize and detect abnormal behaviour in the CPS environment.The presented AOPTML-AD framework initially pre-processes the network data by converting them into a compatible format.Besides,the improved Aquila optimization algorithm-based feature selection(IAOA-FS)algorithm is designed to choose an optimal feature subset.Along with that,the chimp optimization algorithm(ChOA)with an adaptive neuro-fuzzy inference system(ANFIS)model can be employed to recognise anomalies in the CPS environment.The ChOA is applied for optimal adjusting of the membership function(MF)indulged in the ANFIS method.The performance validation of the AOPTML-AD algorithm is carried out using the benchmark dataset.The extensive comparative study reported the better performance of the AOPTML-AD technique compared to recent models,with an accuracy of 99.37%. 展开更多
关键词 Machine learning industry 4.0 cyber-physical systems anomaly detection aquila optimizer
下载PDF
Chaotic Flower Pollination with Deep Learning Based COVID-19 Classification Model
4
作者 T.Gopalakrishnan Mohamed Yacin Sikkandar +4 位作者 Raed Abdullah Alharbi P.Selvaraj Zahraa H.Kareem Ahmed Alkhayyat Ali Hashim Abbas 《Computers, Materials & Continua》 SCIE EI 2023年第3期6195-6212,共18页
The Coronavirus Disease(COVID-19)pandemic has exposed the vulnerabilities of medical services across the globe,especially in underdeveloped nations.In the aftermath of the COVID-19 outbreak,a strong demand exists for ... The Coronavirus Disease(COVID-19)pandemic has exposed the vulnerabilities of medical services across the globe,especially in underdeveloped nations.In the aftermath of the COVID-19 outbreak,a strong demand exists for developing novel computer-assisted diagnostic tools to execute rapid and cost-effective screenings in locations where many screenings cannot be executed using conventional methods.Medical imaging has become a crucial component in the disease diagnosis process,whereas X-rays and Computed Tomography(CT)scan imaging are employed in a deep network to diagnose the diseases.In general,four steps are followed in image-based diagnostics and disease classification processes by making use of the neural networks,such as network training,feature extraction,model performance testing and optimal feature selection.The current research article devises a Chaotic Flower Pollination Algorithm with a Deep Learning-Driven Fusion(CFPADLDF)approach for detecting and classifying COVID-19.The presented CFPA-DLDF model is developed by integrating two DL models to recognize COVID-19 in medical images.Initially,the proposed CFPA-DLDF technique employs the Gabor Filtering(GF)approach to pre-process the input images.In addition,a weighted voting-based ensemble model is employed for feature extraction,in which both VGG-19 and the MixNet models are included.Finally,the CFPA with Recurrent Neural Network(RNN)model is utilized for classification,showing the work’s novelty.A comparative analysis was conducted to demonstrate the enhanced performance of the proposed CFPADLDF model,and the results established the supremacy of the proposed CFPA-DLDF model over recent approaches. 展开更多
关键词 Deep learning medical imaging fusion model chaotic models ensemble model COVID-19 detection
下载PDF
Improvement method for cervical cancer detection: A comparative analysis
5
作者 NUR AIN ALIAS WAN AZANI MUSTAFA +3 位作者 MOHD AMINUDIN JAMLOS AHMED ALKHAYYAT KHAIRUL SHAKIR AB RAHMAN RAMI QMALIK 《Oncology Research》 SCIE 2021年第5期365-376,共12页
Cervical cancer is a prevalent and deadly cancer that affects women all over the world.It affects about 0.5 million women anually and results in over 0.3 million fatalities.Diagnosis of this cancer was previously done... Cervical cancer is a prevalent and deadly cancer that affects women all over the world.It affects about 0.5 million women anually and results in over 0.3 million fatalities.Diagnosis of this cancer was previously done manually,which could result in false positives or negatives.The researchers are still contemplating how to detect cervical cancer automatically and how to evaluate Pap smear images.Hence,this paper has reviewed several detection methods from the previous researches that has been done before.This paper reviews pre-processing,detection method framework for nucleus detection,and analysis performance of the method selected.There are four methods based on a reviewed technique from previous studies that have been running through the experimental procedure using Matlab,and the dataset used is established Herlev Dataset.The results show that the highest performance assessment metric values obtain from Method 1:Thresholding and Trace region boundaries in a binary image with the values of precision 1.0,sensitivity 98.77%,specificity 98.76%,accuracy 98.77%and PSNR 25.74%for a single type of cell.Meanwhile,the average values of precision were 0.99,sensitivity 90.71%,specificity 96.55%,accuracy 92.91%and PSNR 16.22%.The experimental results are then compared to the existing methods from previous studies.They show that the improvement method is able to detect the nucleus of the cell with higher performance assessment values.On the other hand,the majority of current approaches can be used with either a single or a large number of cervical cancer smear images.This study might persuade other researchers to recognize the value of some of the existing detection techniques and offer a strong approach for developing and implementing new solutions. 展开更多
关键词 Cervical cancer DETECTION Pap smear IMAGES
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部