In Wireless Sensor Network(WSN),scheduling is one of the important issues that impacts the lifetime of entire WSN.Various scheduling schemes have been proposed earlier to increase the lifetime of the network.Still,the...In Wireless Sensor Network(WSN),scheduling is one of the important issues that impacts the lifetime of entire WSN.Various scheduling schemes have been proposed earlier to increase the lifetime of the network.Still,the results from such methods are compromised in terms of achieving high lifetime.With this objective to increase the lifetime of network,an Efficient Topology driven Cooperative Self-Scheduling(TDCSS)model is recommended in this study.Instead of scheduling the network nodes in a centralized manner,a combined approach is proposed.Based on the situation,the proposed TDCSS approach performs scheduling in both the ways.By sharing the node statistics in a periodic manner,the overhead during the transmission of control packets gets reduced.This in turn impacts the lifetime of all the nodes.Further,this also reduces the number of idle conditions of each sensor node which is required for every cycle.The proposed method enables every sensor to schedule its own conditions according to duty cycle and topology constraints.Central scheduler monitors the network conditions whereas total transmissions occurs at every cycle.According to this,the source can infer the possible routes in a cycle and approximate the available routes.Further,based on the statistics of previous transmissions,the routes towards the sink are identified.Among the routes found,a single optimal route with energy efficiency is selected to perform data transmission.This cooperative approach improves the lifetime of entire network with high throughput performance.展开更多
Sensor networks are regularly sent to monitor certain physical properties that run in length from divisions of a second to many months or indeed several years.Nodes must advance their energy use for expanding network ...Sensor networks are regularly sent to monitor certain physical properties that run in length from divisions of a second to many months or indeed several years.Nodes must advance their energy use for expanding network lifetime.The fault detection of the network node is very significant for guaranteeing the correctness of monitoring results.Due to different network resource constraints and malicious attacks,security assurance in wireless sensor networks has been a difficult task.The implementation of these features requires larger space due to distributed module.This research work proposes new sensor node architecture integrated with a self-testing core and cryptoprocessor to provide fault-free operation and secured data transmission.The proposed node architecture was designed using Verilog programming and implemented using the Xilinx ISE tool in the Spartan 3E environment.The proposed system supports the real-time application in the range of 33 nanoseconds.The obtained results have been compared with the existing Microcontroller-based system.The power consumption of the proposed system consumes only 3.9 mW,and it is only 24%percentage of AT mega-based node architecture.展开更多
Nowadays electricity market industry is become a major impact on power system for privatization and deregulation of power in global wise. As per the limitation of the transmission system, the complexity arises and the...Nowadays electricity market industry is become a major impact on power system for privatization and deregulation of power in global wise. As per the limitation of the transmission system, the complexity arises and the supply fact will be with demand at the time of balancing. The congestion of the power system is occurring based on the transmission limits of the power desire and amount for operating the system. In order to avoid transmission line congestion, enhanced STF-LODF method is proposed. It shows the regulated line transmission flow with generating units by implementing renewable energy resources (RER) based on enhanced STF-LODF in power systems. It avoids the congestion of transmission line frequently in the power system and manages price based on pricing and sensitivity approach, and also manages optimal location of congestion transmission and instability issues of voltage. The congestion management of Locational Marginal Pricing (LMP) is performed with minimum line loss, less cost, line flow, better sensitivity and better performances in optimal power flow and control flow. The efficiency of the proposed power system is analyzed and verified by the simulation results of tested IEEE 14 bus system.展开更多
The design, simulation and implementation of modified diode assisted extended boost q-ZSI (MDAEB q-ZSI) for photovoltaic application are proposed in this paper. It is the most efficient topology that provide...The design, simulation and implementation of modified diode assisted extended boost q-ZSI (MDAEB q-ZSI) for photovoltaic application are proposed in this paper. It is the most efficient topology that provides a single stage conversion for PV systems by providing high input voltage gain, reduced number of components count, increased voltage boost property, reduced voltage ratings, reduced voltage stress across the switches and simplified control strategies. Its unique capability in single stage conversion with improved voltage gain is used for voltage buck and boost function. The operating modes and the steady state theoretical analysis of voltage boost, control methods and a system design guide for the proposed topology are investigated in this paper. A simulation model of the PV system based on MDAEB q-ZSI has been built in MATLAB/ SIMULINK. Performance parameters such as Total harmonic distortion (THD), voltage gain, voltage stress and boost factor are computed and compared with the conventional quasi z-source inverter. The prototype model for MDAEB q-ZSI is developed and the results are validated.展开更多
The effect of permeable walls and magnetic field on the peristaltic flow of a Carreau fluid in a tapered asymmetric channel is studied. The tapered asymmetric channel is normally created due to the intra-uterine fluid...The effect of permeable walls and magnetic field on the peristaltic flow of a Carreau fluid in a tapered asymmetric channel is studied. The tapered asymmetric channel is normally created due to the intra-uterine fluid flow induced by myometrial contractions and it was simulated by asymmetric peristaltic fluid flow in a two-dimensional infinite non-uniform channel. The analysis has been performed under long wavelength and low- Reynolds number assumptions to linearize the governing flow equations. A series solution in respect of a small Weissenberg number is obtained for the stream function, axial pressure gradient and shear stress. Time average of pressure rise and frictional force on the upper wall has also been computed using numerical integration. The results have been presented graphically for the various interested physical parameters. It is observed that for Carreau fluids the peristalsis works as a pump against a greater pressure rise compared with a Newtonian fluid, while there exists no significant difference in free pumping flux for Newtonian and Carreau fluids in the tapered asymmetric channel.展开更多
文摘In Wireless Sensor Network(WSN),scheduling is one of the important issues that impacts the lifetime of entire WSN.Various scheduling schemes have been proposed earlier to increase the lifetime of the network.Still,the results from such methods are compromised in terms of achieving high lifetime.With this objective to increase the lifetime of network,an Efficient Topology driven Cooperative Self-Scheduling(TDCSS)model is recommended in this study.Instead of scheduling the network nodes in a centralized manner,a combined approach is proposed.Based on the situation,the proposed TDCSS approach performs scheduling in both the ways.By sharing the node statistics in a periodic manner,the overhead during the transmission of control packets gets reduced.This in turn impacts the lifetime of all the nodes.Further,this also reduces the number of idle conditions of each sensor node which is required for every cycle.The proposed method enables every sensor to schedule its own conditions according to duty cycle and topology constraints.Central scheduler monitors the network conditions whereas total transmissions occurs at every cycle.According to this,the source can infer the possible routes in a cycle and approximate the available routes.Further,based on the statistics of previous transmissions,the routes towards the sink are identified.Among the routes found,a single optimal route with energy efficiency is selected to perform data transmission.This cooperative approach improves the lifetime of entire network with high throughput performance.
文摘Sensor networks are regularly sent to monitor certain physical properties that run in length from divisions of a second to many months or indeed several years.Nodes must advance their energy use for expanding network lifetime.The fault detection of the network node is very significant for guaranteeing the correctness of monitoring results.Due to different network resource constraints and malicious attacks,security assurance in wireless sensor networks has been a difficult task.The implementation of these features requires larger space due to distributed module.This research work proposes new sensor node architecture integrated with a self-testing core and cryptoprocessor to provide fault-free operation and secured data transmission.The proposed node architecture was designed using Verilog programming and implemented using the Xilinx ISE tool in the Spartan 3E environment.The proposed system supports the real-time application in the range of 33 nanoseconds.The obtained results have been compared with the existing Microcontroller-based system.The power consumption of the proposed system consumes only 3.9 mW,and it is only 24%percentage of AT mega-based node architecture.
文摘Nowadays electricity market industry is become a major impact on power system for privatization and deregulation of power in global wise. As per the limitation of the transmission system, the complexity arises and the supply fact will be with demand at the time of balancing. The congestion of the power system is occurring based on the transmission limits of the power desire and amount for operating the system. In order to avoid transmission line congestion, enhanced STF-LODF method is proposed. It shows the regulated line transmission flow with generating units by implementing renewable energy resources (RER) based on enhanced STF-LODF in power systems. It avoids the congestion of transmission line frequently in the power system and manages price based on pricing and sensitivity approach, and also manages optimal location of congestion transmission and instability issues of voltage. The congestion management of Locational Marginal Pricing (LMP) is performed with minimum line loss, less cost, line flow, better sensitivity and better performances in optimal power flow and control flow. The efficiency of the proposed power system is analyzed and verified by the simulation results of tested IEEE 14 bus system.
文摘The design, simulation and implementation of modified diode assisted extended boost q-ZSI (MDAEB q-ZSI) for photovoltaic application are proposed in this paper. It is the most efficient topology that provides a single stage conversion for PV systems by providing high input voltage gain, reduced number of components count, increased voltage boost property, reduced voltage ratings, reduced voltage stress across the switches and simplified control strategies. Its unique capability in single stage conversion with improved voltage gain is used for voltage buck and boost function. The operating modes and the steady state theoretical analysis of voltage boost, control methods and a system design guide for the proposed topology are investigated in this paper. A simulation model of the PV system based on MDAEB q-ZSI has been built in MATLAB/ SIMULINK. Performance parameters such as Total harmonic distortion (THD), voltage gain, voltage stress and boost factor are computed and compared with the conventional quasi z-source inverter. The prototype model for MDAEB q-ZSI is developed and the results are validated.
文摘The effect of permeable walls and magnetic field on the peristaltic flow of a Carreau fluid in a tapered asymmetric channel is studied. The tapered asymmetric channel is normally created due to the intra-uterine fluid flow induced by myometrial contractions and it was simulated by asymmetric peristaltic fluid flow in a two-dimensional infinite non-uniform channel. The analysis has been performed under long wavelength and low- Reynolds number assumptions to linearize the governing flow equations. A series solution in respect of a small Weissenberg number is obtained for the stream function, axial pressure gradient and shear stress. Time average of pressure rise and frictional force on the upper wall has also been computed using numerical integration. The results have been presented graphically for the various interested physical parameters. It is observed that for Carreau fluids the peristalsis works as a pump against a greater pressure rise compared with a Newtonian fluid, while there exists no significant difference in free pumping flux for Newtonian and Carreau fluids in the tapered asymmetric channel.