Mental illness remains the greatest chronic health burden globally with few inroads having been made despite significant advances in genomic knowledge in recent decades.The field of psychiatry is constantly challenged...Mental illness remains the greatest chronic health burden globally with few inroads having been made despite significant advances in genomic knowledge in recent decades.The field of psychiatry is constantly challenged to bring new approaches and tools to address and treat the needs of vulnerable individuals and subpopulations,and that has to be supported by a continuous growth in knowledge.The majority of neuropsychiatric symptoms reflect complex geneenvironment interactions,with epigenetics bridging the gap between genetic susceptibility and environmental stressors that trigger disease onset and drive the advancement of symptoms.It has more recently been demonstrated in preclinical models that epigenetics underpins the transgenerational inheritance of stressrelated behavioural phenotypes in both paternal and maternal lineages,providing further supporting evidence for heritability in humans.However,unbiased prospective studies of this nature are practically impossible to conduct in humans so preclinical models remain our best option for researching the molecular pathophysiologies underlying many neuropsychiatric conditions.While rodents will remain the dominant model system for preclinical studies(especially for addressing complex behavioural phenotypes),there is scope to expand current research of the molecular and epigenetic pathologies by using invertebrate models.Here,we will discuss the utility and advantages of two alternative model organisms–Caenorhabditis elegans and Drosophila melanogaster-and summarise the compelling insights of the epigenetic regulation of transgenerational inheritance that are potentially relevant to human psychiatry.展开更多
文摘Mental illness remains the greatest chronic health burden globally with few inroads having been made despite significant advances in genomic knowledge in recent decades.The field of psychiatry is constantly challenged to bring new approaches and tools to address and treat the needs of vulnerable individuals and subpopulations,and that has to be supported by a continuous growth in knowledge.The majority of neuropsychiatric symptoms reflect complex geneenvironment interactions,with epigenetics bridging the gap between genetic susceptibility and environmental stressors that trigger disease onset and drive the advancement of symptoms.It has more recently been demonstrated in preclinical models that epigenetics underpins the transgenerational inheritance of stressrelated behavioural phenotypes in both paternal and maternal lineages,providing further supporting evidence for heritability in humans.However,unbiased prospective studies of this nature are practically impossible to conduct in humans so preclinical models remain our best option for researching the molecular pathophysiologies underlying many neuropsychiatric conditions.While rodents will remain the dominant model system for preclinical studies(especially for addressing complex behavioural phenotypes),there is scope to expand current research of the molecular and epigenetic pathologies by using invertebrate models.Here,we will discuss the utility and advantages of two alternative model organisms–Caenorhabditis elegans and Drosophila melanogaster-and summarise the compelling insights of the epigenetic regulation of transgenerational inheritance that are potentially relevant to human psychiatry.