Iron nanoparticles with dynamic light scattering median diameter around 10 nm have been prepared by thermal decomposition under a nitrogen atmosphere from diironnonacarbonyl (DINC) dissolved in n-butyl-3-methylimidazo...Iron nanoparticles with dynamic light scattering median diameter around 10 nm have been prepared by thermal decomposition under a nitrogen atmosphere from diironnonacarbonyl (DINC) dissolved in n-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF). The effect of temperature changes in the range of 170<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span>C - 200<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span>C and changes in concentration of DINC in BMIMBF in the range of 0.1% - 0.9% on the properties of obtained iron nanoparticles has been investigated. The stable dispersion of iron nanoparticle in ethanol has been prepared after separation of nanoparticles from ionic liquid by centrifugation following by their re-dispersion in ethanol. The possibility of quantitative analysis of iron content in ethanol dispersion by deposition of ferromagnetic nanoparticles on the surface of plastic-protected neodymium magnet, dissolution of iron in hydrochloric acid and addition of ammonium thiocyanate solution following by spectrophotometric determination of iron cations at wavelength of 490 nm has been investigated. The feasibility of using the same approach in case of addition of ethanol dispersion of iron nanoparticles to the liquid animal feeds for evaluation of efficiency of their mixing has been discussed.展开更多
Three major types of protective coating of wood and wood-based materials have been considered. These three types include the coatings based on carboxyl-containing water-soluble polymers which are easily cross-linked b...Three major types of protective coating of wood and wood-based materials have been considered. These three types include the coatings based on carboxyl-containing water-soluble polymers which are easily cross-linked by inorganic salts or OH-containing compounds, pH-sensitive coatings and polymer multi-layer structures. First of three mentioned approaches allows affecting permeability and enhancing the prevention the loss of water from the surface of wood to its surrounding. The advantage of the second approach is its ability to vary and purposely adjust the polymer composition and the number and distribution of -COOH groups in the chain which make the originally water-soluble polymers completely insoluble. The strong feature of the third approach which includes broad use of hydrogen-bonded films produced by layer-by-layer self-assembly is the possibility of manipulation of coatings stability after construction.展开更多
文摘Iron nanoparticles with dynamic light scattering median diameter around 10 nm have been prepared by thermal decomposition under a nitrogen atmosphere from diironnonacarbonyl (DINC) dissolved in n-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF). The effect of temperature changes in the range of 170<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span>C - 200<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span>C and changes in concentration of DINC in BMIMBF in the range of 0.1% - 0.9% on the properties of obtained iron nanoparticles has been investigated. The stable dispersion of iron nanoparticle in ethanol has been prepared after separation of nanoparticles from ionic liquid by centrifugation following by their re-dispersion in ethanol. The possibility of quantitative analysis of iron content in ethanol dispersion by deposition of ferromagnetic nanoparticles on the surface of plastic-protected neodymium magnet, dissolution of iron in hydrochloric acid and addition of ammonium thiocyanate solution following by spectrophotometric determination of iron cations at wavelength of 490 nm has been investigated. The feasibility of using the same approach in case of addition of ethanol dispersion of iron nanoparticles to the liquid animal feeds for evaluation of efficiency of their mixing has been discussed.
文摘Three major types of protective coating of wood and wood-based materials have been considered. These three types include the coatings based on carboxyl-containing water-soluble polymers which are easily cross-linked by inorganic salts or OH-containing compounds, pH-sensitive coatings and polymer multi-layer structures. First of three mentioned approaches allows affecting permeability and enhancing the prevention the loss of water from the surface of wood to its surrounding. The advantage of the second approach is its ability to vary and purposely adjust the polymer composition and the number and distribution of -COOH groups in the chain which make the originally water-soluble polymers completely insoluble. The strong feature of the third approach which includes broad use of hydrogen-bonded films produced by layer-by-layer self-assembly is the possibility of manipulation of coatings stability after construction.