The European XFEL, which has been constructed at DESY in Hamburg, Germany, is an X-ray-Free Electron Laser, which provides X-ray light of unprecedented properties for different experiments in physics, chemistry, biolo...The European XFEL, which has been constructed at DESY in Hamburg, Germany, is an X-ray-Free Electron Laser, which provides X-ray light of unprecedented properties for different experiments in physics, chemistry, biology and technology [1]. The XFEL is based on superconducting cavity technology, which is required to accelerate an electron beam up to 17.5 GeV. The facility is installed about 20 m underground in a 3.4 km long tunnel of 5.2 m diameter. High power RF systems are required to accelerate the beam to the required energy. Each RF station provides RF power to 4 accelerator modules with 8 superconducting cavities by a waveguide RF distribution system [2, 3]. Besides electrical and RF properties, mechanical properties are of high importance, since the waveguide distribution system and its components have to be manufactured, assembled and aligned with high precision. In order to test 100 superconducting accelerator modules within two years three test benches have been created in the AMTF (accelerator module test facility) to achieve the rate of one superconducting module per week. Each RF station of the test facility consists ofa 5 MW RF station at 1.3 GHz, 1.37 ms pulse width and 10 Hz repetition rate, with a waveguide distribution system. Each waveguide distribution supplies RF power to eight cavities, four times a pair of cavities. The distribution allows for a maximum power of 1 MW per cavity when the distribution is switched to a mode supplying power to only four cavities. A new type of 1 MW isolator and a new compact 5 MW power divider have been developed to achieve that goal. We present the waveguide distribution for this test stand and describe the performance of the different elements.展开更多
文摘The European XFEL, which has been constructed at DESY in Hamburg, Germany, is an X-ray-Free Electron Laser, which provides X-ray light of unprecedented properties for different experiments in physics, chemistry, biology and technology [1]. The XFEL is based on superconducting cavity technology, which is required to accelerate an electron beam up to 17.5 GeV. The facility is installed about 20 m underground in a 3.4 km long tunnel of 5.2 m diameter. High power RF systems are required to accelerate the beam to the required energy. Each RF station provides RF power to 4 accelerator modules with 8 superconducting cavities by a waveguide RF distribution system [2, 3]. Besides electrical and RF properties, mechanical properties are of high importance, since the waveguide distribution system and its components have to be manufactured, assembled and aligned with high precision. In order to test 100 superconducting accelerator modules within two years three test benches have been created in the AMTF (accelerator module test facility) to achieve the rate of one superconducting module per week. Each RF station of the test facility consists ofa 5 MW RF station at 1.3 GHz, 1.37 ms pulse width and 10 Hz repetition rate, with a waveguide distribution system. Each waveguide distribution supplies RF power to eight cavities, four times a pair of cavities. The distribution allows for a maximum power of 1 MW per cavity when the distribution is switched to a mode supplying power to only four cavities. A new type of 1 MW isolator and a new compact 5 MW power divider have been developed to achieve that goal. We present the waveguide distribution for this test stand and describe the performance of the different elements.