Narrowband and high-transmission optical filters are extensively used in color display technology, optical information processing, and high-sensitive sensing. Because of large ohmic losses in metallic nanostructures, ...Narrowband and high-transmission optical filters are extensively used in color display technology, optical information processing, and high-sensitive sensing. Because of large ohmic losses in metallic nanostructures, metallic filters usually exhibit low transmittances and broad bandwidths. By employing both strong field enhancements in metallic nano-slits and the Wood’s anomaly in a periodic metallic grating, an extra-narrowband and high-transmission metallic filter is numerically predicted in an ultrathin single-layer metallic grating. Simulation results show that the Wood’s anomaly in the ultrathin(thickness H = 60 nm) single-layer metallic grating results in large field enhancements in the substrate and low losses in the metallic grating. As a result, the transmission bandwidth(transmittance T > 60%) at λ = 1200 nm is as small as △λFWHM=1.6 nm, which is smaller than 4% of that in the previous thin dielectric and metallic filters. The corresponding quality factor is as high as Q = λ/△λFWHM= 750, which is 40 times greater than that in the previous reports. Moreover, the thickness of our metallic filter(H = 60 nm) is smaller than 40% of that in the previous reports, and its maximum transmittance can reach up to 80%. In experiments, a narrowband metallic filter with a bandwidth of about △λFWHM = 10 nm, which is smaller than 25% of that in the previous metallic filters, is demonstrated.展开更多
基金National Key Research and Development Program of China(Grant Nos.2018YFA0704401,2017YFF0206103,and 2016YFA0203500)the National Natural Science Foundation of China(Grant Nos.61922002,91850103,11674014,61475005,11527901,11525414,and 91850111)the Beijing Natural Science Foundation,China(Grant No.Z180015).
文摘Narrowband and high-transmission optical filters are extensively used in color display technology, optical information processing, and high-sensitive sensing. Because of large ohmic losses in metallic nanostructures, metallic filters usually exhibit low transmittances and broad bandwidths. By employing both strong field enhancements in metallic nano-slits and the Wood’s anomaly in a periodic metallic grating, an extra-narrowband and high-transmission metallic filter is numerically predicted in an ultrathin single-layer metallic grating. Simulation results show that the Wood’s anomaly in the ultrathin(thickness H = 60 nm) single-layer metallic grating results in large field enhancements in the substrate and low losses in the metallic grating. As a result, the transmission bandwidth(transmittance T > 60%) at λ = 1200 nm is as small as △λFWHM=1.6 nm, which is smaller than 4% of that in the previous thin dielectric and metallic filters. The corresponding quality factor is as high as Q = λ/△λFWHM= 750, which is 40 times greater than that in the previous reports. Moreover, the thickness of our metallic filter(H = 60 nm) is smaller than 40% of that in the previous reports, and its maximum transmittance can reach up to 80%. In experiments, a narrowband metallic filter with a bandwidth of about △λFWHM = 10 nm, which is smaller than 25% of that in the previous metallic filters, is demonstrated.