期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Laser-assisted Simulation of Dose Rate Effects of Wide Band Gap Semiconductor Devices
1
作者 TANG Ge XIAO Yao +3 位作者 SUN Peng LIU Jingrui ZHANG Fuwang LI Mo 《原子能科学技术》 EI CAS CSCD 北大核心 2023年第12期2314-2325,共12页
Laser-assisted simulation technique has played a crucial role in the investigation of dose rate effects of silicon-based devices and integrated circuits,due to its exceptional advantages in terms of flexibility,safety... Laser-assisted simulation technique has played a crucial role in the investigation of dose rate effects of silicon-based devices and integrated circuits,due to its exceptional advantages in terms of flexibility,safety,convenience,and precision.In recent years,wide band gap materials,known for their strong bonding and high ionization energy,have gained increasing attention from researchers and hold significant promise for extensive applications in specialized environments.Consequently,there is a growing need for comprehensive research on the dose rate effects of wide band gap materials.In response to this need,the use of laser-assisted simulation technology has emerged as a promising approach,offering an effective means to assess the efficacy of investigating these materials and devices.This paper focused on investigating the feasibility of laser-assisted simulation to study the dose rate effects of wide band gap semiconductor devices.Theoretical conversion factors for laser-assisted simulation of dose rate effects of GaN-based and SiC-based devices were been provided.Moreover,to validate the accuracy of the conversion factors,pulsed laser and dose rate experiments were conducted on GaN-based and SiC-based PIN diodes.The results demonstrate that pulsed laser radiation andγ-ray radiation can produce highly similar photocurrent responses in GaN-based and SiC-based PIN diodes,with correlation coefficients of 0.98 and 0.974,respectively.This finding reaffirms the effectiveness of laser-assisted simulation technology,making it a valuable complement in studying the dose rate effects of wide band gap semiconductor devices. 展开更多
关键词 laser-assisted simulation dose rate effect wide band gap semiconductor conversion factor
下载PDF
Enhanced reflection chiroptical effect of planar anisotropic chiral metamaterials placed on the interface of two media
2
作者 杨秀 魏涛 +3 位作者 陈飞良 高福华 杜惊雷 侯宜栋 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第10期464-472,共9页
The strong chiroptical effect is highly desirable and has a wide range of applications in biosensing, chiral catalysis,polarization tuning, and chiral photo detection. In this work, we find a simple method to enhance ... The strong chiroptical effect is highly desirable and has a wide range of applications in biosensing, chiral catalysis,polarization tuning, and chiral photo detection. In this work, we find a simple method to enhance the reflection circular dichroism(CDR) by placing the planar anisotropic chiral metamaterials(i.e., Z-shaped PACMs) on the interface of two media(i.e., Z-PCMI) with a large refractive index difference. The maximum reflection CDR from the complex system can reach about 0.840 when the refractive index is set as ntop = 4.0 and nbottom = 1.49, which is approximately three times larger than that of placing the Z-shaped PACMs directly on the substrate(i.e., Z-PCMS). While the minimum reflection CDR is 0.157 when the refractive index is set as ntop = 1.0 and nbottom = 1.49. So we can get a large available range of reflection CDR from -0.840 to -0.157. Meanwhile, the transmission CDT remains unchanged with the refractive index ntop increment. Our in-depth research indicates that the large reflection CDR is derived from the difference of non-conversion components of the planar anisotropic chiral metamaterials’ reflection matrices. In short, we provide a simple and practical method to enhance the chiroptical effect by changing the refractive index difference between two media without having to design a complex chiral structure. 展开更多
关键词 chiroptical effect chiral metamaterials refractive index
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部