期刊文献+
共找到1,012篇文章
< 1 2 51 >
每页显示 20 50 100
Preliminary discussion on the ignition mechanism of exploding foil initiators igniting boron potassium nitrate 被引量:1
1
作者 Haotian Jian Guoqiang Zheng +4 位作者 Lejian Chen Zheng Ning Guofu Yin Peng Zhu Ruiqi Shen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期222-231,共10页
Exploding foil initiator(EFI)is a kind of advanced device for initiating explosives,but its function is unstable when it comes to directly igniting pyrotechnics.To solve the problem,this research aims to reveal the ig... Exploding foil initiator(EFI)is a kind of advanced device for initiating explosives,but its function is unstable when it comes to directly igniting pyrotechnics.To solve the problem,this research aims to reveal the ignition mechanism of EFIs directly igniting pyrotechnics.An oscilloscope,a photon Doppler velocimetry,and a plasma spectrum measurement system were employed to obtain information of electric characteristics,impact pressure,and plasma temperature.The results of the electric characteristics and the impact pressure were inconsistent with ignition results.The only thing that the ignition success tests had in common was that their plasma all had a relatively long period of high-temperature duration(HTD).It eventually concludes that the ignition mechanism in this research is the microconvection heat transfer rather than the shock initiation,which differs from that of exploding foil initiators detonating explosives.Furthermore,the methods for evaluating the ignition success of semiconductor bridge initiators are not entirely applicable to the tests mentioned in this paper.The HTD is the critical parameter for judging the ignition success,and it is influenced by two factors:the late time discharge and the energy of the electric explosion.The longer time of the late time discharge and the more energy of the electric explosion,the easier it is to expand the HTD,which improves the probability of the ignition success. 展开更多
关键词 Exploding foil initiator PDV Plasma spectrum Ignition mechanism Boron potassium nitrate
下载PDF
Measurement of in-plane deformations of microsystems by digital holography and speckle interferometry(Invited Paper) 被引量:1
2
作者 G. Pedrini J. Gaspar +1 位作者 O. Paul W. Osten 《Chinese Optics Letters》 SCIE EI CAS CSCD 2009年第12期1109-1112,共4页
The reliability of microsystems is an important issue and for their quality inspection, it is necessary to know the displacements or deformations due to the applied mechanical, thermal, or electrostatic loads. We show... The reliability of microsystems is an important issue and for their quality inspection, it is necessary to know the displacements or deformations due to the applied mechanical, thermal, or electrostatic loads. We show how interferometrical techniques like digital holography and speckle interferometry can be used for the measurement of in plane deformations of microsystems with nanometric accuracy and we give a description of the measurement uncertainties. 展开更多
关键词 Invited Paper Measurement of in-plane deformations of microsystems by digital holography and speckle interferometry
原文传递
Comparison of Microwave Imaging Algorithms for Short-Range Scenarios
3
作者 Zhengyue Dong Ning Xu Kuiwen Xu 《Journal of Beijing Institute of Technology》 EI CAS 2024年第3期227-236,共10页
Three dimensional(3-D)imaging algorithms with irregular planar multiple-input-multiple-output(MIMO)arrays are discussed and compared with each other.Based on the same MIMO array,a modified back projection algorithm(MB... Three dimensional(3-D)imaging algorithms with irregular planar multiple-input-multiple-output(MIMO)arrays are discussed and compared with each other.Based on the same MIMO array,a modified back projection algorithm(MBPA)is accordingly proposed and four imaging algorithms are used for comparison,back-projection method(BP),back-projection one in time domain(BP-TD),modified back-projection one and fast Fourier transform(FFT)-based MIMO range migration algorithm(FFT-based MIMO RMA).All of the algorithms have been implemented in practical application scenarios by use of the proposed imaging system.Back to the practical applications,MIMO array-based imaging system with wide-bandwidth properties provides an efficient tool to detect objects hidden behind a wall.An MIMO imaging radar system,composed of a vector network analyzer(VNA),a set of switches,and an array of Vivaldi antennas,have been designed,fabricated,and tested.Then,these algorithms have been applied to measured data collected in different scenarios constituted by five metallic spheres in the absence and in the presence of a wall between the antennas and the targets in simulation and pliers in free space for experimental test.Finally,the focusing properties and time consumption of the above algorithms are compared. 展开更多
关键词 multiple-input-multiple-output(MIMO) short-range imaging back projection modi-fied back propagation range migration algorithm(RMA) through-wall imaging
下载PDF
A Layered Energy-Efficient Multi-Node Scheduling Mechanism for Large-Scale WSN
4
作者 Xue Zhao Shaojun Tao +2 位作者 Hongying Tang Jiang Wang Baoqing Li 《Computers, Materials & Continua》 SCIE EI 2024年第4期1335-1351,共17页
In recent years, target tracking has been considered one of the most important applications of wireless sensornetwork (WSN). Optimizing target tracking performance and prolonging network lifetime are two equally criti... In recent years, target tracking has been considered one of the most important applications of wireless sensornetwork (WSN). Optimizing target tracking performance and prolonging network lifetime are two equally criticalobjectives in this scenario. The existing mechanisms still have weaknesses in balancing the two demands. Theproposed heuristic multi-node collaborative scheduling mechanism (HMNCS) comprises cluster head (CH)election, pre-selection, and task set selectionmechanisms, where the latter two kinds of selections forma two-layerselection mechanism. The CH election innovatively introduces the movement trend of the target and establishesa scoring mechanism to determine the optimal CH, which can delay the CH rotation and thus reduce energyconsumption. The pre-selection mechanism adaptively filters out suitable nodes as the candidate task set to applyfor tracking tasks, which can reduce the application consumption and the overhead of the following task setselection. Finally, the task node selection is mathematically transformed into an optimization problem and thegenetic algorithm is adopted to form a final task set in the task set selection mechanism. Simulation results showthat HMNCS outperforms other compared mechanisms in the tracking accuracy and the network lifetime. 展开更多
关键词 Node scheduling pre-selection target tracking WSN
下载PDF
Feedback linearization and equivalent-disturbance compensation control strategy for piezoelectric stage
5
作者 Tao Huang Yingbin Wang +3 位作者 Zhihong Luo Huajun Cao Guibao Tao Mingxiang Ling 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第2期49-59,共11页
Piezoelectric stages use piezoelectric actuators and flexure hinges as driving and amplifying mechanisms,respectively.These systems have high positioning accuracy and high-frequency responses,and they are widely used ... Piezoelectric stages use piezoelectric actuators and flexure hinges as driving and amplifying mechanisms,respectively.These systems have high positioning accuracy and high-frequency responses,and they are widely used in various precision/ultra-precision positioning fields.However,the main challenge with these devices is the inherent hysteresis nonlinearity of piezoelectric actuators,which seriously affects the tracking accuracy of a piezoelectric stage.Inspired by this challenge,in this work,we developed a Hammerstein model to describe the hysteresis nonlinearity of a piezoelectric stage.In particular,in our proposed scheme,a feedback-linearization algorithm is used to eliminate the static hysteresis nonlinearity.In addition,a composite controller based on equivalent-disturbance compensation was designed to counteract model uncertainties and external disturbances.An analysis of the stability of a closed-loop system based on this feedback-linearization algorithm and composite controller was performed,and this was followed by extensive comparative experiments using a piezoelectric stage developed in the laboratory.The experimental results confirmed that the feedback-linearization algorithm and the composite controller offer improved linearization and trajectory-tracking performance. 展开更多
关键词 Piezoelectric stage Hysteresis nonlinearity Feedback linearization Equivalent-disturbance compensation
下载PDF
How do high-voltage cathode and PEO electrolyte get along well?EIS analysis mechanism&potentiometric control strategy
6
作者 Xiaodong Bai Chaoliang Zheng +4 位作者 Heng Zhang Jian Liu Panpan Wang Baojia Xia Jianling Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期424-436,共13页
PEO-based all-solid-state electrolytes are extensively utilized and researched owing to their exceptional safety,low-mass-density,and cost-effectiveness.However,the low oxidation potential of PEO makes the interface p... PEO-based all-solid-state electrolytes are extensively utilized and researched owing to their exceptional safety,low-mass-density,and cost-effectiveness.However,the low oxidation potential of PEO makes the interface problem with the high-voltage cathode extremely severe.In this work,the impedance of PEO-based all-solid-state batteries with high-voltage cathode(NCM811)was studied at different potentials.The Nyquist plots displayed a gyrate arc at low-frequencies for NCM811/PEO interface.Based on the kinetic modeling,it was deduced that there is a decomposition reaction of PEO-matrix in addition to de-embedded reaction of NCM811,and the PEO intermediate product(dehydra-PEO)adsorbed on the electrode surface leading to low-frequency inductive arcs.Furthermore,the distribution of relaxation time shows the dehydra-PEO results in the kinetic tardiness of the charge transfer process in the temporal dimension.Hence,an artificial interface layer(CEI_(x))was modified on the surface of NCM811 to regulate the potential of cathode/electrolyte interface to prevent the high-voltage deterioration of PEO.NCM/CEI_(x)/PEO batteries exhibit capacity retentions of 96.0%,84.6%,and 76.8%after undergoing 100 cycles at cut-off voltages of 4.1,4.2,and 4.3 V,respectively.Therefore,here the failure mechanism of high-voltage PEO electrolyte is investigated by EIS and a proposed solving strategy is presented. 展开更多
关键词 PEo-based electrolyte High-voltage cathode Electrochemical impedance spectroscopy Mechanism research Electrochemical characteristic
下载PDF
Damage evolution and removal behaviors of GaN crystals involved in double-grits grinding
7
作者 Chen Li Yuxiu Hu +4 位作者 Zongze Wei Chongjun Wu Yunfeng Peng Feihu Zhang Yanquan Geng 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期469-484,共16页
Elucidating the complex interactions between the work material and abrasives during grinding of gallium nitride(GaN)single crystals is an active and challenging research area.In this study,molecular dynamics simulatio... Elucidating the complex interactions between the work material and abrasives during grinding of gallium nitride(GaN)single crystals is an active and challenging research area.In this study,molecular dynamics simulations were performed on double-grits interacted grinding of GaN crystals;and the grinding force,coefficient of friction,stress distribution,plastic damage behaviors,and abrasive damage were systematically investigated.The results demonstrated that the interacted distance in both radial and transverse directions achieved better grinding quality than that in only one direction.The grinding force,grinding induced stress,subsurface damage depth,and abrasive wear increase as the transverse interacted distance increases.However,there was no clear correlation between the interaction distance and the number of atoms in the phase transition and dislocation length.Appropriate interacted distances between abrasives can decrease grinding force,coefficient of friction,grinding induced stress,subsurface damage depth,and abrasive wear during the grinding process.The results of grinding tests combined with cross-sectional transmission electron micrographs validated the simulated damage results,i.e.amorphous atoms,high-pressure phase transition,dislocations,stacking faults,and lattice distortions.The results of this study will deepen our understanding of damage accumulation and material removal resulting from coupling between abrasives during grinding and can be used to develop a feasible approach to the wheel design of ordered abrasives. 展开更多
关键词 GRINDING double-grits molecular dynamics damage material removal gallium nitride
下载PDF
Power Allocation for SE Maximization in Uplink Massive MIMO System Under Minimum Rate Constraint
8
作者 Wang Hui Yu Xiangbin +1 位作者 Liu Fuyuan Bai Jiawei 《China Communications》 SCIE CSCD 2024年第3期104-117,共14页
In this paper,we optimize the spectrum efficiency(SE)of uplink massive multiple-input multiple-output(MIMO)system with imperfect channel state information(CSI)over Rayleigh fading channel.The SE optimization problem i... In this paper,we optimize the spectrum efficiency(SE)of uplink massive multiple-input multiple-output(MIMO)system with imperfect channel state information(CSI)over Rayleigh fading channel.The SE optimization problem is formulated under the constraints of maximum power and minimum rate of each user.Then,we develop a near-optimal power allocation(PA)scheme by using the successive convex approximation(SCA)method,Lagrange multiplier method,and block coordinate descent(BCD)method,and it can obtain almost the same SE as the benchmark scheme with lower complexity.Since this scheme needs three-layer iteration,a suboptimal PA scheme is developed to further reduce the complexity,where the characteristic of massive MIMO(i.e.,numerous receive antennas)is utilized for convex reformulation,and the rate constraint is converted to linear constraints.This suboptimal scheme only needs single-layer iteration,thus has lower complexity than the near-optimal scheme.Finally,we joint design the pilot power and data power to further improve the performance,and propose an two-stage algorithm to obtain joint PA.Simulation results verify the effectiveness of the proposed schemes,and superior SE performance is achieved. 展开更多
关键词 imperfect CSI massive MIMO minimum rate constraint power allocation spectral efficiency
下载PDF
Flexible capacitive pressure sensor based on interdigital electrodes with porous microneedle arrays for physiological signal monitoring
9
作者 Jiahui Xu Minghao Wang +9 位作者 Minyi Jin Siyan Shang Chuner Ni Yili Hu Xun Sun Jun Xu Bowen Ji Le Li Yuhua Cheng Gaofeng Wang 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第1期18-31,共14页
Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stab... Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stability have hindered their large-scale commercial application.Herein,aflexible capacitive pressure sensor based on an interdigital electrode structure with two porous microneedle arrays(MNAs)is pro-posed.The porous substrate that constitutes the MNA is a mixed product of polydimethylsiloxane and NaHCO3.Due to its porous and interdigital structure,the maximum sensitivity(0.07 kPa-1)of a porous MNA-based pressure sensor was found to be seven times higher than that of an imporous MNA pressure sensor,and it was much greater than that of aflat pressure sensor without a porous MNA structure.Finite-element analysis showed that the interdigital MNA structure can greatly increase the strain and improve the sensitivity of the sen-sor.In addition,the porous MNA-based pressure sensor was found to have good stability over 1500 loading cycles as a result of its bilayer parylene-enhanced conductive electrode structure.Most importantly,it was found that the sensor could accurately monitor the motion of afinger,wrist joint,arm,face,abdomen,eye,and Adam’s apple.Furthermore,preliminary semantic recognition was achieved by monitoring the movement of the Adam’s apple.Finally,multiple pressure sensors were integrated into a 33 array to detect a spatial pressure distribu-×tion.Compared to the sensors reported in previous works,the interdigital electrode structure presented in this work improves sensitivity and stability by modifying the electrode layer rather than the dielectric layer. 展开更多
关键词 Capacitive pressure sensor Microneedle array Porous PDMS Interdigital electrode
下载PDF
Preparation of single atom catalysts for high sensitive gas sensing
10
作者 Xinxin He Ping Guo +7 位作者 Xuyang An Yuyang Li Jiatai Chen Xingyu Zhang Lifeng Wang Mingjin Dai Chaoliang Tan Jia Zhang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期216-248,共33页
Single atom catalysts(SACs)have garnered significant attention in the field of catalysis over the past decade due to their exceptional atom utilization efficiency and distinct physical and chemical properties.For the ... Single atom catalysts(SACs)have garnered significant attention in the field of catalysis over the past decade due to their exceptional atom utilization efficiency and distinct physical and chemical properties.For the semiconductor-based electrical gas sensor,the core is the catalysis process of target gas molecules on the sensitive materials.In this context,the SACs offer great potential for highly sensitive and selective gas sensing,however,only some of the bubbles come to the surface.To facilitate practical applications,we present a comprehensive review of the preparation strategies for SACs,with a focus on overcoming the challenges of aggregation and low loading.Extensive research efforts have been devoted to investigating the gas sensing mechanism,exploring sensitive materials,optimizing device structures,and refining signal post-processing techniques.Finally,the challenges and future perspectives on the SACs based gas sensing are presented. 展开更多
关键词 single atom catalysts PREPARATION sensing mechanism gas sensing
下载PDF
Chalcogenide Ovonic Threshold Switching Selector
11
作者 Zihao Zhao Sergiu Clima +4 位作者 Daniele Garbin Robin Degraeve Geoffrey Pourtois Zhitang Song Min Zhu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期1-40,共40页
Today’s explosion of data urgently requires memory technologies capable of storing large volumes of data in shorter time frames,a feat unattain-able with Flash or DRAM.Intel Optane,commonly referred to as three-dimen... Today’s explosion of data urgently requires memory technologies capable of storing large volumes of data in shorter time frames,a feat unattain-able with Flash or DRAM.Intel Optane,commonly referred to as three-dimensional phase change memory,stands out as one of the most promising candidates.The Optane with cross-point architecture is constructed through layering a storage element and a selector known as the ovonic threshold switch(OTS).The OTS device,which employs chalcogenide film,has thereby gathered increased attention in recent years.In this paper,we begin by providing a brief introduction to the discovery process of the OTS phenomenon.Subsequently,we summarize the key elec-trical parameters of OTS devices and delve into recent explorations of OTS materials,which are categorized as Se-based,Te-based,and S-based material systems.Furthermore,we discuss various models for the OTS switching mechanism,including field-induced nucleation model,as well as several carrier injection models.Additionally,we review the progress and innovations in OTS mechanism research.Finally,we highlight the successful application of OTS devices in three-dimensional high-density memory and offer insights into their promising performance and extensive prospects in emerging applications,such as self-selecting memory and neuromorphic computing. 展开更多
关键词 Non-volatile memory Ovonic threshold switch(OTS) CHALCOGENIDE SELECTOR
下载PDF
Accurate diagnosis of severe coronary stenosis based on resting magnetocardiography: a prospective, single-center, cross-sectional analysis
12
作者 Jian-Guo CUI Feng TIAN +7 位作者 Yu-Hao MIAO Qin-Hua JIN Ya-Jun SHI Li LI Meng-Jun SHEN Xiao-Ming XIE Shu-Lin ZHANG Yun-Dai CHEN 《Journal of Geriatric Cardiology》 SCIE CAS CSCD 2024年第4期407-420,共14页
OBJECTIVE To evalu ate the role of resting magnetocardiography in identifying seve re coronary artery stenosis in patients with suspected coronary artery disease.METHODS A total of 513 patients with angina symptoms we... OBJECTIVE To evalu ate the role of resting magnetocardiography in identifying seve re coronary artery stenosis in patients with suspected coronary artery disease.METHODS A total of 513 patients with angina symptoms were included and divided into two groups based on the extent of coronary artery disease determined by angiography:the non-severe coronary stenusis group(<70% stenosis) and the severe coronary stenosis group(≥70% stenosis).The diagnostic model was constructed using magnetic field map(MFM) parameters,either individually or in combination with clinical indicators.The performance of the models was evaluated using receiver operating characteristic curves,accuracy,sensitivity,specificity,positive predictive value(PPV) and ne gative predictive value(NPV).Calibration plots and decision curve analysis were performed to investigate the clinical utility and performance of the models,respectively.RESULTS In the severe coronary stenosis group,QR_MCTDd,S_MDp,and TT_(MA)C_(50) were significantly higher than those in the non-severe coronary stenosis group(10,46±10.66 vs,5.11±6.07,P <0.001;7.2±8.64 vs.4.68±6.95,P=0.003;0.32±57.29 vs.0.26±57.29,P <0.001).While,QR_MV_(amp),R_(MA),and T_(MA) in the severe coronary stenosis group were lower(0.23±0.16 vs.0.28±0.16,P<0.001;55.06±48.68 vs.59.24±53.01,P<0.001;51.67±39.32 vs. 60.45±51.33,P <0.001).Seven MFM parameters were integrated into the model,resulting in an area under the curve of 0.810(95% CI:0.765-0.855).The sensitivity,specificity,PPV,NPV,and accurecy were 71.7%,80.4%,93.3%,42.8 %,and 73.5%;respectevely.The combined model exhibited an area under the curve of 0.845(95% CI:0.798-0.892).The sensitivity,specificity,PPV,NPV,and accuracy were 84.3%,73.8%,92.6%,54.6%,and 82.1%;respectively.Calibration curves demonstrate d excellent agreement between the nomogram prediction and actual observation.The decision curve analysis showed that the c ombine d model provided greater net benefit compared to the magnetocardingraphy model.CONCLUSIONS The novel quantitative MFM parameters,whether used individually or in combination with clinical indicators,have been shown to effectively pre dict the risk of severe coronary stenosis in patients presenting with angina-like symptoms.Magnetocardiography,an emerging non-invasive diagnostic tool,warrants further exploration for its potential in diagnosing coronary heart disease. 展开更多
关键词 CORONARY STENOSIS SPECIFICITY
下载PDF
Enhancing the Interaction of Carbon Nanotubes by Metal-Organic Decomposition with Improved Mechanical Strength and Ultra-Broadband EMI Shielding Performance
13
作者 Yu-Ying Shi Si-Yuan Liao +7 位作者 Qiao-Feng Wang Xin-Yun Xu Xiao-Yun Wang Xin-Yin Gu You-Gen Hu Peng-Li Zhu Rong Sun Yan-Jun Wan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期281-294,共14页
The remarkable properties of carbon nanotubes(CNTs)have led to promising applications in the field of electromagnetic inter-ference(EMI)shielding.However,for macroscopic CNT assemblies,such as CNT film,achieving high ... The remarkable properties of carbon nanotubes(CNTs)have led to promising applications in the field of electromagnetic inter-ference(EMI)shielding.However,for macroscopic CNT assemblies,such as CNT film,achieving high electrical and mechanical properties remains challenging,which heavily depends on the tube-tube interac-tions of CNTs.Herein,we develop a novel strategy based on metal-organic decomposition(MOD)to fabricate a flexible silver-carbon nanotube(Ag-CNT)film.The Ag particles are introduced in situ into the CNT film through annealing of MOD,leading to enhanced tube-tube interactions.As a result,the electrical conductivity of Ag-CNT film is up to 6.82×10^(5) S m^(-1),and the EMI shielding effectiveness of Ag-CNT film with a thickness of~7.8μm exceeds 66 dB in the ultra-broad frequency range(3-40 GHz).The tensile strength and Young’s modulus of Ag-CNT film increase from 30.09±3.14 to 76.06±6.20 MPa(~253%)and from 1.12±0.33 to 8.90±0.97 GPa(~795%),respectively.Moreover,the Ag-CNT film exhibits excellent near-field shield-ing performance,which can effectively block wireless transmission.This innovative approach provides an effective route to further apply macroscopic CNT assemblies to future portable and wearable electronic devices. 展开更多
关键词 EMI shielding Mechanical strength Carbon nanotubes Metal-organic decomposition Flexibility
下载PDF
Emission and capture characteristics of deep hole trap in n-GaN by optical deep level transient spectroscopy
14
作者 Jin Sui Jiaxiang Chen +3 位作者 Haolan Qu Yu Zhang Xing Lu Xinbo Zou 《Journal of Semiconductors》 EI CAS CSCD 2024年第3期58-63,共6页
Emission and capture characteristics of a deep hole trap(H1)in n-GaN Schottky barrier diodes(SBDs)have been investigated by optical deep level transient spectroscopy(ODLTS).Activation energy(Eemi)and capture cross-sec... Emission and capture characteristics of a deep hole trap(H1)in n-GaN Schottky barrier diodes(SBDs)have been investigated by optical deep level transient spectroscopy(ODLTS).Activation energy(Eemi)and capture cross-section(σ_(p))of H1 are determined to be 0.75 eV and 4.67×10^(−15)cm^(2),respectively.Distribution of apparent trap concentration in space charge region is demonstrated.Temperature-enhanced emission process is revealed by decrease of emission time constant.Electricfield-boosted trap emission kinetics are analyzed by the Poole−Frenkel emission(PFE)model.In addition,H1 shows point defect capture properties and temperature-enhanced capture kinetics.Taking both hole capture and emission processes into account during laser beam incidence,H1 features a trap concentration of 2.67×10^(15)cm^(−3).The method and obtained results may facilitate understanding of minority carrier trap properties in wide bandgap semiconductor material and can be applied for device reliability assessment. 展开更多
关键词 GaN deep level transient spectroscopy minority carrier trap time constant trap concentration
下载PDF
High-precision X-ray characterization for basic materials in modern high-end integrated circuit
15
作者 Weiran Zhao Qiuqi Mo +3 位作者 Li Zheng Zhongliang Li Xiaowei Zhang Yuehui Yu 《Journal of Semiconductors》 EI CAS CSCD 2024年第7期12-24,共13页
Semiconductor materials exemplify humanity's unwavering pursuit of enhanced performance,efficiency,and functionality in electronic devices.From its early iterations to the advanced variants of today,this field has... Semiconductor materials exemplify humanity's unwavering pursuit of enhanced performance,efficiency,and functionality in electronic devices.From its early iterations to the advanced variants of today,this field has undergone an extraordinary evolution.As the reliability requirements of integrated circuits continue to increase,the industry is placing greater emphasis on the crystal qualities.Consequently,conducting a range of characterization tests on the crystals has become necessary.This paper will examine the correlation between crystal quality,device performance,and production yield,emphasizing the significance of crystal characterization tests and the important role of high-precision synchrotron radiation X-ray topography characterization in semiconductor analysis.Finally,we will cover the specific applications of synchrotron radiation characterization in the development of semiconductor materials. 展开更多
关键词 X-ray topography synchrotron radiation semiconductor materials crystal defects
下载PDF
Wafer-scale 30°twisted bilayer graphene epitaxially grown on Cu_(0.75)Ni_(0.25)(111)
16
作者 马鹏程 张翱 +10 位作者 甄洪润 江志诚 杨逸尘 丁建阳 刘正太 刘吉山 沈大伟 于庆凯 刘丰 张学富 刘中灏 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期467-471,共5页
Twisted bilayer graphene(TBG) has been extensively studied because of its novel physical properties and potential application in electronic devices.Here we report the synthesis and characterization of 300 TBG naturall... Twisted bilayer graphene(TBG) has been extensively studied because of its novel physical properties and potential application in electronic devices.Here we report the synthesis and characterization of 300 TBG naturally grown on Cu_(0.75)Ni_(0.25)(111) film and investigate the electronic structure by angle-resolved photoemission spectroscopy.Compared with other substrates,our TBG with a wafer scale is acquired with a shorter growth time.The Fermi velocity and energy gap of Dirac cones of TBG are comparable with those of a monolayer on Cu_(0.85)Ni_(0.15)(111).The signature of moré lattices has not been observed in either the low-energy electron diffraction patterns or the Fermi surface map within experimental resolution,possibly due to different Cu and Ni contents in the substrates enhancing the different couplings between the substrate and the first/second layers and hindering the formation of a quasiperiodic structure. 展开更多
关键词 twisted bilayer graphene electronic structure Cu/Ni(111)
下载PDF
Magnetic Topological Dirac Semimetal Transition Driven by SOC in EuMg_(2)Bi_(2)
17
作者 王佳萌 钱浩吉 +2 位作者 姜琦 乔山 叶茂 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第1期63-67,共5页
Magnetic topological semimetals have been at the forefront of condensed matter physics due to their ability to exhibit exotic transport phenomena.Investigating the interplay between magnetic and topological orders in ... Magnetic topological semimetals have been at the forefront of condensed matter physics due to their ability to exhibit exotic transport phenomena.Investigating the interplay between magnetic and topological orders in systems with broken time-reversal symmetry is crucial for realizing non-trivial quantum effects.We delve into the electronic structure of the rare-earth-based antiferromagnetic Dirac semimetal EuMg_(2)Bi_(2) using first-principles calculations and angle-resolved photoemission spectroscopy.Our calculations reveal that the spin-orbit coupling(SOC)in EuMg_(2)Bi_(2) prompts an insulator to topological semimetal transition,with the Dirac bands protected by crystal symmetries.The linearly dispersive states near the Fermi level,primarily originating from Bi 6p orbitals,are observed on both the(001)and(100)surfaces,confirming that EuMg_(2)Bi_(2) is a three-dimensional topological Dirac semimetal.This research offers pivotal insights into the interplay between magnetism,SOC and topological phase transitions in spintronics applications. 展开更多
关键词 SPECTROSCOPY TOPOLOGICAL DIRAC
下载PDF
The tip of the iceberg?The underestimated potential of non-canonical beta-amyloids for Alzheimer's disease
18
作者 Lukas Busch Bernd Bufe 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第12期2689-2690,共2页
Formation and deposition of amyloid-beta(Aβ) are considered one of the main drivers of Alzheimer's disease(AD). For more than 30 years, Aβ has challenged researchers through its complex physicochemical propertie... Formation and deposition of amyloid-beta(Aβ) are considered one of the main drivers of Alzheimer's disease(AD). For more than 30 years, Aβ has challenged researchers through its complex physicochemical properties and multiple peptide processing steps that involve several proteases(Andreasson et al., 2007). 展开更多
关键词 AMYLOID ALZHEIMER
下载PDF
In vitro microglia models:the era of engineered cell microenvironments
19
作者 Ahmed Sharaf Raissa Timmerman +1 位作者 Jeffrey Bajramovic Angelo Accardo 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1709-1710,共2页
Background:The most widely employed approach by cell biologists to performing in vitro cell culture assays is the one using 2D plastic culture ware systems,which allows reproducibility and ease of use.Moreover,this me... Background:The most widely employed approach by cell biologists to performing in vitro cell culture assays is the one using 2D plastic culture ware systems,which allows reproducibility and ease of use.Moreover,this method is cost-effective.However,in most cases,these flat surfaces lead to the formation of unrealistic 2D cell monolayers,which do not reproduce the complex configuration characteristics of native tissues in terms of dimensionality,rigidity,and topography.For this reason,a new generation of interdisciplinary scientists,working across microengineering and cell biology has started to develop engineered cell microenvironments(Huang et al.,2017)by employing advanced materials and fabrication approaches(Fan et al.,2019)over the last two decades.Depending on the level of resolution of the adopted manufacturing technique,the geometrical features of these structures can reach micrometric or even sub-micrometric dimensions comparable to the ones of cellular somas or cellular filopodia,therefore fostering cell-biomaterial interactions.The developed structures are pivotal for a better investigation of fundamental mechanobiology(Lemma et al.,2019),the optimization of in vitro disease modeling,drug/treatment screening(Gao et al.,2021),and tissue engineering(Mani et al.,2022). 展开更多
关键词 CULTURE RIGIDITY
下载PDF
Recent progress on fabrication and flat-band physics in 2D transition metal dichalcogenides moiré superlattices
20
作者 Xinyu Huang Xu Han +12 位作者 Yunyun Dai Xiaolong Xu Jiahao Yan Mengting Huang Pengfei Ding Decheng Zhang Hui Chen Vijay Laxmi Xu Wu Liwei Liu Yeliang Wang Yang Xu Yuan Huang 《Journal of Semiconductors》 EI CAS CSCD 2023年第1期43-55,共13页
Moiré superlattices are formed when overlaying two materials with a slight mismatch in twist angle or lattice constant. They provide a novel platform for the study of strong electronic correlations and non-trivia... Moiré superlattices are formed when overlaying two materials with a slight mismatch in twist angle or lattice constant. They provide a novel platform for the study of strong electronic correlations and non-trivial band topology, where emergent phenomena such as correlated insulating states, unconventional superconductivity, and quantum anomalous Hall effect are discovered. In this review, we focus on the semiconducting transition metal dichalcogenides(TMDs) based moiré systems that host intriguing flat-band physics. We first review the exfoliation methods of two-dimensional materials and the fabrication technique of their moiré structures. Secondly, we overview the progress of the optically excited moiré excitons, which render the main discovery in the early experiments on TMD moiré systems. We then introduce the formation mechanism of flat bands and their potential in the quantum simulation of the Hubbard model with tunable doping, degeneracies, and correlation strength. Finally, we briefly discuss the challenges and future perspectives of this field. 展开更多
关键词 flat-band physics two-dimensional materials moirésuperlattices Hubbard model moiréexcitons
下载PDF
上一页 1 2 51 下一页 到第
使用帮助 返回顶部