Assessment and emergency planning to cope with disaster risks are usually founded primarily on expert evaluations, in part because local governments and public bodies mainly finance the recovery activities. Local comm...Assessment and emergency planning to cope with disaster risks are usually founded primarily on expert evaluations, in part because local governments and public bodies mainly finance the recovery activities. Local communities affected by disasters are scarcely really involved in the processes of information collection, problem analysis, or design of emergency plans.However, the development of good practices for incorporating local people’s knowledge into disaster risk management, known as Community-Based Disaster Risk Management (CBDRM), is becoming more common. Scientific communities increasingly realize the importance of local knowledge, though in Georgia this is still uncommon. Georgia faces frequent natural disasters and threats to its fragile ecosystems caused by unsustainable natural resource management and agricultural practices, improper infrastructure and urban development, as well as by innate geological and climatic factors. In this context, the lack of communication between local communities and public administrations is absolutely deleterious. The article analyzes the effectiveness of participatory methods and tools for better comprehension of people’s vulnerability and responses. Fieldwork in mountain areas of Caucasus involved local communities to investigate the direct participation of local people in Disaster Risk Management and assess their availability and interest to engage in hazard mapping and risk responses.展开更多
To quantitatively assess the landslide hazard in Khelvachauri, Georgia, the statistic method of hazard index was applied. A spatial database was constructed in Geographic Information System (GIS) including topographic...To quantitatively assess the landslide hazard in Khelvachauri, Georgia, the statistic method of hazard index was applied. A spatial database was constructed in Geographic Information System (GIS) including topographic data, geologic maps, land-use, and active landslide events (extracted from the landslide inventory). After that, causal factors of landslides (such as slope, aspect, lithology, geomorphology, land-use and soil depth) were produced to calculate the corresponding weights, and thereby we defined a relevant set of spatial criteria for the latter landslide hazard assessment. On top of that, susceptibility assessment was performed in order to classify the area to low, moderate and high susceptible regions. Results showed that NW aspect, mountain geomorphology, private land-use, laterite loam and clay, slope between 19 to 24 degrees, and soil depth between 10 - 20 cm were found to have the largest contribution to high landslide susceptibility. The high success rate (72.35%) was obtained using area under the curve from the landslide susceptibility map. Meanwhile, effect analysis was carried out to assess the accuracy of the landslide susceptibility, indicating that the factor of slope played the most important role in determining the occurring probability of landslide although it did not deviate as much as other factors. Finally, the vulnerability analyses were carried out by means of the Spatial Multi-Criteria Estimation model, which in turn, led to the risk assessment. It turned out that not so much of the number of buildings (~ 34.13%) was associated with high-risk zone and that governmental and private land-use almost accounted for the same risk (39.9% and 40.9%, respectively).展开更多
文摘Assessment and emergency planning to cope with disaster risks are usually founded primarily on expert evaluations, in part because local governments and public bodies mainly finance the recovery activities. Local communities affected by disasters are scarcely really involved in the processes of information collection, problem analysis, or design of emergency plans.However, the development of good practices for incorporating local people’s knowledge into disaster risk management, known as Community-Based Disaster Risk Management (CBDRM), is becoming more common. Scientific communities increasingly realize the importance of local knowledge, though in Georgia this is still uncommon. Georgia faces frequent natural disasters and threats to its fragile ecosystems caused by unsustainable natural resource management and agricultural practices, improper infrastructure and urban development, as well as by innate geological and climatic factors. In this context, the lack of communication between local communities and public administrations is absolutely deleterious. The article analyzes the effectiveness of participatory methods and tools for better comprehension of people’s vulnerability and responses. Fieldwork in mountain areas of Caucasus involved local communities to investigate the direct participation of local people in Disaster Risk Management and assess their availability and interest to engage in hazard mapping and risk responses.
文摘To quantitatively assess the landslide hazard in Khelvachauri, Georgia, the statistic method of hazard index was applied. A spatial database was constructed in Geographic Information System (GIS) including topographic data, geologic maps, land-use, and active landslide events (extracted from the landslide inventory). After that, causal factors of landslides (such as slope, aspect, lithology, geomorphology, land-use and soil depth) were produced to calculate the corresponding weights, and thereby we defined a relevant set of spatial criteria for the latter landslide hazard assessment. On top of that, susceptibility assessment was performed in order to classify the area to low, moderate and high susceptible regions. Results showed that NW aspect, mountain geomorphology, private land-use, laterite loam and clay, slope between 19 to 24 degrees, and soil depth between 10 - 20 cm were found to have the largest contribution to high landslide susceptibility. The high success rate (72.35%) was obtained using area under the curve from the landslide susceptibility map. Meanwhile, effect analysis was carried out to assess the accuracy of the landslide susceptibility, indicating that the factor of slope played the most important role in determining the occurring probability of landslide although it did not deviate as much as other factors. Finally, the vulnerability analyses were carried out by means of the Spatial Multi-Criteria Estimation model, which in turn, led to the risk assessment. It turned out that not so much of the number of buildings (~ 34.13%) was associated with high-risk zone and that governmental and private land-use almost accounted for the same risk (39.9% and 40.9%, respectively).