Within this work,life cycle assessment modeling is used to determine top design priorities and quantitatively inform sustainable design decision-making for a prefabricated modular building.A case-study life-cycle asse...Within this work,life cycle assessment modeling is used to determine top design priorities and quantitatively inform sustainable design decision-making for a prefabricated modular building.A case-study life-cycle assessment was performed for a 5,000 ft2 prefabricated commercial building constructed in San Francisco,California,and scenario analysis was run examining the life cycle environmental impacts of various energy and material design substitutions,and a structural design change.Results show that even for a highly energy-efficient modular building,the top design priority is still minimizing operational energy impacts,since this strongly dominates the building life cycle’s environmental impacts.However,as an energy-efficient building approaches net zero energy,manufacturing-phase impacts are dominant,and a new set of design priorities emerges.Transportation and end-of-life disposal impacts were of low to negligible importance in both cases.展开更多
基金the Stanford University Terman Faculty Fellowship,and the staff of Project Frog,for their generous support.
文摘Within this work,life cycle assessment modeling is used to determine top design priorities and quantitatively inform sustainable design decision-making for a prefabricated modular building.A case-study life-cycle assessment was performed for a 5,000 ft2 prefabricated commercial building constructed in San Francisco,California,and scenario analysis was run examining the life cycle environmental impacts of various energy and material design substitutions,and a structural design change.Results show that even for a highly energy-efficient modular building,the top design priority is still minimizing operational energy impacts,since this strongly dominates the building life cycle’s environmental impacts.However,as an energy-efficient building approaches net zero energy,manufacturing-phase impacts are dominant,and a new set of design priorities emerges.Transportation and end-of-life disposal impacts were of low to negligible importance in both cases.