期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Increase in medium-size rainfall events will enhance the C-sequestration capacity of biological soil crusts 被引量:2
1
作者 CuiHua Huang Fei Peng +5 位作者 Itaru Shibata Jun Luo Xian Xue Kinya Akashi Atsushi Tsunekawa Tao Wang 《Research in Cold and Arid Regions》 CSCD 2019年第1期81-92,共12页
Biological soil crusts(BSCs) play important roles in the carbon(C) balance in arid regions. Net C balance of BSCs is strongly dependent on rainfall and consequent activation of microbes in the BSCs. The compensation-r... Biological soil crusts(BSCs) play important roles in the carbon(C) balance in arid regions. Net C balance of BSCs is strongly dependent on rainfall and consequent activation of microbes in the BSCs. The compensation-rainfall size for BSCs(the minimum rainfall amount for a positive net C balance) is assumed to be different with BSCs of different developmental stages. A field experiment with simulated rainfall amount(SRA) of 0, 1, 5, 10, 20, and 40 mm was conducted to examine the C fluxes and compensation-rainfall size of BSCs in different parts of fixed dunes in the ecotone between the Badain Jaran Desert and the Minqin Oasis. We found algae-lichen crust on the interdunes and crest, algae crust on the leeward side, and lichen-moss crust on the windward. Even a small rainfall(1 mm) can activate both photosynthesis and respiration of all types of BSCs. The gross ecosystem production, ecosystem respiration, and net ecosystem exchange were significantly affected by SRA, hours after the simulated rainfall, position on a dune, and their interactions. The rapid activation of photosynthesis provides a C source and therefore could be responsible for the increase of C efflux after each rewetting. C-uptake and-emission capacity of all the BSCs positively correlated with rainfall size, with the lowest C fluxes on the leeward side. The compensation rainfall for a net C uptake was 3.80, 15.54, 8.62, and 1.88 mm for BSCs on the interdunes, the leeward side, the crest, and the windward side, respectively. The whole dune started to show a net C uptake with an SRA of 5 mm and maximized with an SRA of about 30 mm. The compensation-rainfall size is negatively correlated with chlorophyll content. Our results suggest that BSCs will be favored in terms of C balance, and sand dune stabilization could be sustained with an increasing frequency of 5-10 mm rainfall events in the desert-oasis transitional zone.- 展开更多
关键词 biological soil CRUST RAINFALL SIZE desert-oasis ECOTONE C balance ARID region
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部