Modern agricultural practices involve the extensive use of chemical fertilisers to increase productivity. However less than half of the applied chemical fertiliser nitrogen is used by the target crops, and much of the...Modern agricultural practices involve the extensive use of chemical fertilisers to increase productivity. However less than half of the applied chemical fertiliser nitrogen is used by the target crops, and much of the remaining pollutes air and waterways. Farming systems that sustain productivity while reducing the negative effect on the environment are crucially needed. One avenue is to use plant growth promoting rhizobacteria (PGPR) as bio-fertiliser to reduce the dependency on chemical fertiliser. The potential of PGPR to improve the efficiency of the combination of organic and chemical fertilisers has recently been proposed. Here, we demonstrate that this combination benefits sugarcane grown in field conditions.展开更多
文摘Modern agricultural practices involve the extensive use of chemical fertilisers to increase productivity. However less than half of the applied chemical fertiliser nitrogen is used by the target crops, and much of the remaining pollutes air and waterways. Farming systems that sustain productivity while reducing the negative effect on the environment are crucially needed. One avenue is to use plant growth promoting rhizobacteria (PGPR) as bio-fertiliser to reduce the dependency on chemical fertiliser. The potential of PGPR to improve the efficiency of the combination of organic and chemical fertilisers has recently been proposed. Here, we demonstrate that this combination benefits sugarcane grown in field conditions.