The Atlantic Meridional Overturning Circulation(AMOC)is a crucial component of the Earth’s climate system due to its fundamental role in heat distribution,carbon and oxygen transport,and the weather.Other climate com...The Atlantic Meridional Overturning Circulation(AMOC)is a crucial component of the Earth’s climate system due to its fundamental role in heat distribution,carbon and oxygen transport,and the weather.Other climate components,such as the atmosphere and sea ice,influence the AMOC.Evaluating the physical mechanisms of those interactions is paramount to increasing knowledge about AMOC’s functioning.In this study,the authors used outputs from the Community Earth System Model version 2 and observational data to investigate changes in theAMOC and the associated physical processes.Two DECK experiments were evaluated:piControl and 1pctCO_(2),with an annual increase of 1%of atmospheric CO_(2).The analysis revealed a significant decrease in the AMOC,associated with changes in mixed layer depth and buoyancy in high latitudes of the North Atlantic,resulting in the shutdown of deep convection and potentially affecting the formation of North Atlantic Deep Water and Antarctic Bottom Water.A vital aspect observed in this study is the association between increased runoff and reduced water evaporation,giving rise to a positive feedback process.Consequently,the rates of freshwater spreading have intensified during this period,which could lead to an accelerated disruption of the AMOC beyond the projections of existing models.展开更多
IEEE 802.11ah is a new Wi-Fi standard for sub-1Ghz communications,aiming to address the challenges of the Internet of Things(IoT).Significant changes in the legacy 802.11 standards have been proposed to improve the ne...IEEE 802.11ah is a new Wi-Fi standard for sub-1Ghz communications,aiming to address the challenges of the Internet of Things(IoT).Significant changes in the legacy 802.11 standards have been proposed to improve the network performance in high contention scenarios,the most important of which is the Restricted Access Window(RAW)mechanism.This mechanism promises to increase the throughput and energy efficiency by dividing stations into different groups.Under this scheme,only the stations belonging to the same group may access the channel,which reduces the collision probability in dense scenarios.However,the standard does not define the RAW grouping strategy.In this paper,we develop a new mathematical model based on the renewal theory,which allows for tracking the number of transmissions within the limited RAW slot contention period defined by the standard.We then analyze and evaluate the performance of RAW mechanism.We also introduce a grouping scheme to organize the stations and channel access time into different groups within the RAW.Furthermore,we propose an algorithm to derive the RAW configuration parameters of a throughput maximizing grouping scheme.We additionally explore the impact of channel errors on the contention within the time-limited RAW slot and the overall RAW optimal configuration.The presented analytical framework can be applied to many other Wi-Fi standards that integrate periodic channel reservations.Extensive simulations using the MATLAB software validate the analytical model and prove the effectiveness of the proposed RAW configuration scheme.展开更多
Long term hepatitis B virus (HBV) infection is a major risk factor in pathogenesis of chronic liver diseases,including hepatocellular carcinoma (HCC). The HBV encod-ed proteins,hepatitis B virus X protein and preS,app...Long term hepatitis B virus (HBV) infection is a major risk factor in pathogenesis of chronic liver diseases,including hepatocellular carcinoma (HCC). The HBV encod-ed proteins,hepatitis B virus X protein and preS,appear to contribute importantly to the pathogenesis of HCC. Both are associated with oxidative stress,which can damage cellular molecules like lipids,proteins,and DNA during chronic infection. Chronic alcohol use is another important factor that contributes to oxidative stress in the liver. Previous studies reported that treatment with antioxidants,such as curcumin,silymarin,green tea,and vitamins C and E,can protect DNA from damage and regulate liver pathogenesis-related cascades by reducing reactive oxygen species. This review summarizes some of the relationships between oxidative stress and liver pathogenesis,focusing upon HBV and alcohol,and suggests antioxidant therapeutic approaches.展开更多
AIM:To investigate the role of hepatitis B virus X-protein(HBx)-induced reactive oxygen species(ROS)on liver carcinogenesis in HBx transgenic mice and HepG2-HBx cells.METHODS:Cell growth rate was analyzed,and through ...AIM:To investigate the role of hepatitis B virus X-protein(HBx)-induced reactive oxygen species(ROS)on liver carcinogenesis in HBx transgenic mice and HepG2-HBx cells.METHODS:Cell growth rate was analyzed,and through western blotting,mitogenic signaling was observed.Endogenous ROS from wild and HBx transgenic mice and HepG2-Mock and HBx cells were assayed by FACS-calibur.Identification of oxidized and reduced phosphatase and tensin homolog(PTEN)was analyzed through N-ethylmaleimide alkylation,nonreducing electrophoresis.RESULTS:We observed that the cell-proliferation-related phosphoinositide 3-kinase/Akt pathway is activated by HBx in vivo and in vitro.Increased ROS were detected by HBx.Tumor suppressor PTEN,via dephosphorylation of Akt,was oxidized and inactivated by increased ROS.Increased oxidized PTEN activated the mitogenic pathway through over-activated Akt.However,treatment with ROS scavenger N-acetyl cysteine can reverse PTEN to a reduced form.Endogenously produced ROS also stimulated HBx expression.CONCLUSION:HBx induced ROS promoted Akt pathways via oxidized inactive PTEN.HBx and ROS maintained a positive regulatory loop,which aggravated carcinogenesis.展开更多
Mixing efficiency in two-phase gas–liquid agitated vessel is one of the important challenges in the industrial processes.Computational fluid dynamics technique(CFD)was used to investigate the effect of four different...Mixing efficiency in two-phase gas–liquid agitated vessel is one of the important challenges in the industrial processes.Computational fluid dynamics technique(CFD)was used to investigate the effect of four different pitched blade impellers,including 15°,30°,45°and 60°,on the mixing quality of gas–liquid agitated vessel.The multiphase flow behavior was modeled by Eulerian–Eulerian multiphase approach,and RNG k-εwas used to model the turbulence.The CFD results showed that a strong global vortex plays the main role on the mixing quality of the gas phase in the vessel.Based on the standard deviation criterion,it was observed that the axial distribution of the gas phase in the 30°impeller is about 55%better than the others.In addition,the results showed that the 30°impeller has a uniform radial distribution over the other impellers and the maximum gas phase holdup in the vessel.Investigation of the power consumption of the impellers showed that the 30°impeller has the highest power consumption among the other pitched blade impellers.Also,examine the effect of same power condition for pitched blade impellers showed that the 30°impeller has the best mixing quality in this condition.展开更多
Burgeoning growth of tall buildings in urban areas around the world is placing new demands on their performance under winds.This involves selection of the building form that minimizes wind loads and structural topolog...Burgeoning growth of tall buildings in urban areas around the world is placing new demands on their performance under winds.This involves selection of the building form that minimizes wind loads and structural topologies that efficiently transfer loads.Current practice is to search for optimal shapes,but this limits buildings with static or fixed form.Aerodynamic shape tailoring that consists of modifying the external form of the building has shown great promise in reducing wind loads and associated structural motions as reflected in the design of Taipei 101 and Burj Khalifa.In these buildings,corner modifications of the cross-section and tapering along the height are introduced.An appealing alternative is to design a building that can adapt its form to the changing complex wind environment in urban areas with clusters of tall buildings,i.e.,by implementing a dynamic facade.To leap beyond the static shape optimization,autonomous dynamic morphing of the building shape is advanced in this study,which is implemented through a cyber–physical system that fuses together sensing,computing,actuating,and engineering informatics.This approach will permit a building to intelligently morph its profile to minimize the source of dynamic wind load excitation,and holds the promise of revolutionizing tall buildings from conventional static to dynamic facades by taking advantage of the burgeoning advances in computational design.展开更多
Accurate inversion of land surface evapotranspiration (ET) in arid areas is of great significance for understanding global eco-hydrological process and exploring the spatio-temporal variation and ecological response...Accurate inversion of land surface evapotranspiration (ET) in arid areas is of great significance for understanding global eco-hydrological process and exploring the spatio-temporal variation and ecological response of water resources. It is also important in the functional evaluation of regional water cycle and water balance, as well as the rational allocation and management of water resources. This study, based on model validation analysis at varied scales in fiwe Central Asian countries and China's Xinjiang, developed an appropriate approach for ET inversion in arid lands. The actual ET during growing seasons of the study area was defined, and the changes in water participating in evaporation in regional water cycle were then educed. The results show the simulation error of SEBS (Surface Energy Balance System) model under cloud amount consideration was 1.34% at 30-m spatial scale, 2.75% at 1-km spatial scale and 6,37% at 4-kin spatial scale. ET inversion for 1980-2007 applying SEBS model in the study area indicates: (1) the evaporation depth (May-September) by land types descends in the order of waters (660.24 ram) 〉 cultivated land (464.66 mm) 〉 woodland (388.44 mm) 〉 urbanized land (168.16 mm) 〉 grassland (160.48 mm) 〉 unused land (83.08 mm); and (2) ET during the 2005 growing season in Xinjiang and Central Asia was 2,168.68x108 m3 (with an evaporation/precipitation ratio of 1.05) and 9,741.03x108 m3 (with an evaporation/precipitation ratio of 1.4), respectively. The results unveiled the spatio-temporal variation rules of ET process in arid areas, providing a reference for further research on the water cycle and water balance in similar arid regions.展开更多
In response to limited availability of soil resources in basal root zone, plant extends its roots into nearby resource-rich zones to fulfill essential resource demands for survival and reproduction. This root prolifer...In response to limited availability of soil resources in basal root zone, plant extends its roots into nearby resource-rich zones to fulfill essential resource demands for survival and reproduction. This root proliferation into that enriched zones occupied by other plants constitutes interplant overlapping rooting zones and thereby the overlapping depletion zones, causing reduction in resource uptake by neighboring plants. By incorporating this mechanism into the classic resource competition model, we study interplant direct competition through their rooting system in an overlapping depletion zone. The model results indicate an extension of Tilman’s R* rule that has already been proved true when plants compete indirectly through their effect on shared resources. The results reveal that plant’s direct competitive ability (i.e., the ability to occupy an overlapping depletion zone by excluding others) can be characterized by its R*-value, where a best competitor having lowest R*-value excludes others from an overlapping zone and occupies the zone by depleting the resource level to the lowest as in its non-overlapping depletion zone. By analyzing the model, we find a suite of traits that confers R* variation among directly competing plants. This suite of traits would be a useful proxy measure for R* that do not necessarily require to establish equilibrium field monoculture—a requirement for R* measurement in the field.展开更多
Seasonal shifts play an important role in soil microbial community composition. This study examined the hypothesis that soil microbial community structure would vary with seasonal shifts in the Wuyi Mountains in South...Seasonal shifts play an important role in soil microbial community composition. This study examined the hypothesis that soil microbial community structure would vary with seasonal shifts in the Wuyi Mountains in Southeast China, and that two representative tree species (Castanopisi carlesii and Cunninghamia lanceolata) may have different soil microbial community composition. Phospholipids fatty acid analysis (PLFA) of seasonal shifts and was used to assess the effect vegetation types on soil microbial community structure. A total of 22 different PLFAs were identified from all the soil samples. The bacterial PLFAs accounted for 62.37% of the total PLFAs, followed by fungi (28.94%), and the minimum was actinomycetes (6.41%). Overall, the level of PLFAs in C. carlesii soil was greater than those in C. lanceolata soil, and significant differences were observed in some seasons. The amounts of total, bacteria, actinomycic and fungal PLFAs significantly changed with the seasons and followed a sequence order (summer 〉 autumn 〉 spring 〉 winter). The bacteria/fungi PLFAs and G (+)/G (-) PLFAs of two vegetation types also changed with the seasons and the ratios in summer and autumn were higher than those in spring and winter. The correlation analysis of microbial PLFAs and soil physicochemical properties showed that the total, bacteria, fungal, actinomycic, G (+) and G (-) PLFAs were significantly positive correlation with TOC, TN, TP, TK and moisture content. We concluded that the seasonal shifts and vegetation types affect soil microbial community composition by changing the soil physicochemical properties.展开更多
Ecosystem stays far from thermodynamic equilibrium. Through the interactions among biotic and abiotic components, and encompassing physical environments, ecosystem forms a dissipative struc- ture that allows it to dis...Ecosystem stays far from thermodynamic equilibrium. Through the interactions among biotic and abiotic components, and encompassing physical environments, ecosystem forms a dissipative struc- ture that allows it to dissipate energy continuously and thereby remains functional over time. Biotic regulation of energy and material fluxes in and out of the ecosystem allows it to maintain a homeostatic state which corresponds to a self-organized state emerged in a non-equilibrium thermodynamic system. While the associated self-organizational processes approach to homeostatic state, entropy (a measure of irre- versibility) degrades and dissipation of energy increases. We propose here that at a homeostatic state of ecosystem, biodiversity which includes both phenotypic and functional diversity, attains optimal values. As long as biodiversity remains within its optimal range, the corresponding homeostatic state is maintained. However, while embedded environmental conditions fluctuate along the gradient of accelerating changes, phenotypic diversity and functional diversity contribute inversely to the associated self-organizing proc- esses. Furthermore, an increase or decrease in biodiversity outside of its optimal range makes the eco- system vulnerable to transition into a different state.展开更多
Spatial organization of multiple plant species that appears as a non-random distribution of vegetative patches is one of the mostly observed spatial patterns in arid ecosystems. Yet understanding of ecological process...Spatial organization of multiple plant species that appears as a non-random distribution of vegetative patches is one of the mostly observed spatial patterns in arid ecosystems. Yet understanding of ecological processes allowing this spatial pattern to emerge through interspecific interactions is still lacking. With a proposed conceptual model involving interspecific trade-offs between species competitive ability and colonization ability, we have argued that within patch abundance dynamics regulated by the mechanisms of competition are strongly influenced by the between patches colonization dynamics that are maintained via this trade-offs and it holds a positive, intraspecific occupancy-abundance relationship, in which increased patch occupancy increases species density within inhabiting patches. In a constant environment, while local abundance dynamics approach toward a stable equilibrium point, a fixed spatial arrangement of species can be retained through this coupled dynamics. However, in fluctuating environments where existence of such stable equilibriums is highly uncertain, it may involve continuous transitions from one community state to another as species re-organized themselves over space through the rapid changes in local species abundances. While some of the inhabiting patches are destroyed exogenously or endogenously, or species responses to increasing environmental fluctuations vary increasingly with time, discontinuous transitions into an abrupt, irreversible state of the community dynamics may occur, as with this effect the inherent positive relationship between occupancy and abundance of species is no longer maintained.展开更多
The sea surface height data volume of the future wide-swath two-dimensional(2D)altimetric satellite is thousands of times greater than that of nadir altimetric satellites.The time complexity of the 2D altimetry mappin...The sea surface height data volume of the future wide-swath two-dimensional(2D)altimetric satellite is thousands of times greater than that of nadir altimetric satellites.The time complexity of the 2D altimetry mapping reaches O(n^(3)).It is challenging to map the global grid products of future 2D altimetric satellites.In this study,to improve the efficiency of global data mapping,a new algorithm called parallel-dynamic interpolation(PA-DI)was designed.Through the use of 2D data segmentation and fine-grained data mosaic methods,the parallel along-track DI processes were accelerated,and a fast and efficient spatial-temporal high-resolution and low-error enhanced mapping method was obtained.As determined from a comparison of the single-threaded DI with the PA-DI,the new algorithm optimized the time complexity from O(n^(3))to O(n^(3)/KL),which improved the mapping efficiency and achieved the expected results.According to the test results of the observing system simulation experiments,the PA-DI algorithm may provide an efficient and reliable method for future wide-swath 2D altimetric satellite mapping.展开更多
Chemical bonding as well as structural,electronic and optical properties of CsPbF3 are calculated using the highly accurate full potential linearized augmented plane-wave method within the framework of density functio...Chemical bonding as well as structural,electronic and optical properties of CsPbF3 are calculated using the highly accurate full potential linearized augmented plane-wave method within the framework of density functional theory(DFT).The calculated lattice constant is found to be in good agreement with the experimental results.The electron density plots reveal strong ionic bonding in Cs-F and strong covalent bonding in Pb-F.The calculations show that the material is a direct and wide bandgap semiconductor with a fundamental gap at the R-symmetry point.Optical properties such as the real and imaginary parts of the dielectric function,refractive index,extinction coefficient,reflectivity,optical conductivity and absorption coefficient are also calculated.Based on the calculated wide and direct bandgap,as well as other optical properties of the compound,it is predicted that CsPbF_(3) is suitable for optoelectronic devices and anti-reflecting coatings.展开更多
In the present work,we investigate the structural,optoelectronic and thermoelectric properties of the YLi3X2(X = Sb,Bi) compounds using the full potential augmented plane wave plus local orbital(FP-APW+lo) method.The ...In the present work,we investigate the structural,optoelectronic and thermoelectric properties of the YLi3X2(X = Sb,Bi) compounds using the full potential augmented plane wave plus local orbital(FP-APW+lo) method.The exchangecorrelation potential is treated with the generalized gradient approximation/local density approximation(GGA/LDA) and with the modified Becke-Johnson potential(TB-mBJ) in order to improve the electronic band structure calculations.In addition,the estimated ground state properties such as the lattice constants,external parameters,and bulk moduli agree well with the available experimental data.Our band structure calculations with GGA and LDA predict that both compounds have semimetallic behaviors.However,the band structure calculations with the GGA/TB-mBJ approximation indicate that the ground state of the YLi3Sb2compound is semiconducting and has an estimated indirect band gap(Γ-L) of about 0.036 eV while the ground state of YLi3Bi2compound is semimetallic.Conversely the LDA/TB-mBJ calculations indicate that both compounds exhibit semiconducting characters and have an indirect band gap(Γ-L) of about 0.15 eV and 0.081 eV for YLi3Sb and YLi3Bi2respectively.Additionally,the optical properties reveal strong responses of the herein materials in the energy range between the IR and extreme UV regions.Thermoelectric properties such as thermal conductivity,electrical conductivity,Seebeck coefficient,and thermo power factors are also calculated.展开更多
Acetylcholinesterase(AChE) plays an important role in Alzheimer's disease(AD). The excessive activity of AChE causes various neuronal problems, particularly dementia and neuronal cell deaths. Generally, antiAChE d...Acetylcholinesterase(AChE) plays an important role in Alzheimer's disease(AD). The excessive activity of AChE causes various neuronal problems, particularly dementia and neuronal cell deaths. Generally, antiAChE drugs induce some serious neuronal side effects in humans. Therefore, this study sought to identify alternative drug molecules from natural products with fewer side effects than those of conventional drugs for treating AD. To achieve this, we developed computational methods for predicting drug and target binding affinities using the Schrodinger suite. The target and ligand molecules were retrieved from established databases. The target enzyme has 539 amino acid residues in its sequence alignment. Ligand molecules of 20 bioactive molecules were obtained from different kinds of plants, after which we performed critical analyses such as molecular docking; molecular dynamic(MD) simulations; and absorption, distribution, metabolism, and excretion(ADME) analysis. In the docking studies, the natural compound rutin showed a superior docking score of à 12.335 with a good binding energy value ofà73.313 kcal/mol. Based on these findings, rutin and the target complex was used to perform MD simulations to analyze rutin stability at 30 ns. In conclusion, our study demonstrates that rutin is a superior drug candidate for AD. Therefore, we propose that this molecule is worth further investigation using in vitro studies.展开更多
It has been reported that the minimal spatially extended phytoplankton-zooplankton system exhibits both temporal regular/chaotic behaviour, and spatiotemporal chaos in a patchy environment. As a further investigation ...It has been reported that the minimal spatially extended phytoplankton-zooplankton system exhibits both temporal regular/chaotic behaviour, and spatiotemporal chaos in a patchy environment. As a further investigation by means of computer simulations and theoretical analysis, in this paper we observe that the spiral waves may exist and the spatiotemporal chaos emerge when the parameters are within the mixed Turing-Hopf bifurcation region, which arises from the far-field breakup of the spiral waves over a large range of diffusion coefficients of phytoplankton and zooplankton. Moreover, the spatiotemporal chaos arising from the far-field breakup of spiral waves does not gradually invade the whole space of that region. Our results are confirmed by nonlinear bifurcation of wave trains, We also discuss ecological implications of these spatially structured patterns.展开更多
Shorea robusta Gaertn. f.(Sal)is one of the important tim-ber-yielding plants in India, which dominates the vegetation of Terai landscape of Uttar Pradesh state in India forming various communities based on its asso...Shorea robusta Gaertn. f.(Sal)is one of the important tim-ber-yielding plants in India, which dominates the vegetation of Terai landscape of Uttar Pradesh state in India forming various communities based on its associations. The present study deals with delineation, map-ping and characterization of various communities of Sal (Shorea robusta) forests in Terai landscape of Uttar Pradesh, India ranging across over 16 districts. Field survey and visual interpretation based forest vegetation type classification and mapping was carried out as part of the project entitled ‘Biodiversity characterization at landscape level using remote sensing and GIS’. Indian Remote Sensing-P6 (Resourcesat-1) Linear Imaging Self Scanner-III satellite data was used during the study. The total area covered by different Sal forests was found to be approximately 2256.77 km2. Sal communities were identified and characterized based on their spectral properties, physiognomy and phytosociological charac-teristics. Following nine Sal communities were identified, delineated and mapped with reasonable accuracyviz.,Chandar,Damar, dry plains, moist plains, western alluvium, western alluvium plains, mixed moist deciduous, mixed dry deciduous andSiwalik. It is evident from the area estimates that mixed moist deciduous Sal is the most dominant commu-nity in the region covering around (1613.90 km2), other major communi-ties were found as western alluvium plains Sal (362.44 km2), mixed dry deciduous Sal (362.44 km2) and dry plains Sal (107.71 km2). The Terai landscape of Uttar Pradesh faces tremendous anthropogenic pressure leading to deterioration of the forests. Community level information could be used monitoring the status as well as for micro level conserva-tion and planning of the Sal forests in Terai Landscape of Uttar Pradesh.展开更多
基金This work was possible through the financing of PEC-20480 Project between Royal Dutch Shell(Shell)and the Laboratório de Métodos Computacionais em Engenharia(LAMCE)and through the doctoral fellowship funding by CNPq for Elisa Passos Case number 141819/2016-2the postdoctoral fellowship funding by FAPERJ E 10/2020-Edital Inteligência Artificial Case Number E-26/203.327/2022-Enrollment No.Scholarship 2015.08297.7 for Lívia Sancho.
文摘The Atlantic Meridional Overturning Circulation(AMOC)is a crucial component of the Earth’s climate system due to its fundamental role in heat distribution,carbon and oxygen transport,and the weather.Other climate components,such as the atmosphere and sea ice,influence the AMOC.Evaluating the physical mechanisms of those interactions is paramount to increasing knowledge about AMOC’s functioning.In this study,the authors used outputs from the Community Earth System Model version 2 and observational data to investigate changes in theAMOC and the associated physical processes.Two DECK experiments were evaluated:piControl and 1pctCO_(2),with an annual increase of 1%of atmospheric CO_(2).The analysis revealed a significant decrease in the AMOC,associated with changes in mixed layer depth and buoyancy in high latitudes of the North Atlantic,resulting in the shutdown of deep convection and potentially affecting the formation of North Atlantic Deep Water and Antarctic Bottom Water.A vital aspect observed in this study is the association between increased runoff and reduced water evaporation,giving rise to a positive feedback process.Consequently,the rates of freshwater spreading have intensified during this period,which could lead to an accelerated disruption of the AMOC beyond the projections of existing models.
基金supported by the Spanish Ministry of Science,Education and Universities,the European Regional Development Fund and the State Research Agency,Grant No.RTI2018-098156-B-C52.
文摘IEEE 802.11ah is a new Wi-Fi standard for sub-1Ghz communications,aiming to address the challenges of the Internet of Things(IoT).Significant changes in the legacy 802.11 standards have been proposed to improve the network performance in high contention scenarios,the most important of which is the Restricted Access Window(RAW)mechanism.This mechanism promises to increase the throughput and energy efficiency by dividing stations into different groups.Under this scheme,only the stations belonging to the same group may access the channel,which reduces the collision probability in dense scenarios.However,the standard does not define the RAW grouping strategy.In this paper,we develop a new mathematical model based on the renewal theory,which allows for tracking the number of transmissions within the limited RAW slot contention period defined by the standard.We then analyze and evaluate the performance of RAW mechanism.We also introduce a grouping scheme to organize the stations and channel access time into different groups within the RAW.Furthermore,we propose an algorithm to derive the RAW configuration parameters of a throughput maximizing grouping scheme.We additionally explore the impact of channel errors on the contention within the time-limited RAW slot and the overall RAW optimal configuration.The presented analytical framework can be applied to many other Wi-Fi standards that integrate periodic channel reservations.Extensive simulations using the MATLAB software validate the analytical model and prove the effectiveness of the proposed RAW configuration scheme.
基金Supported by The 21st Century Frontier Program in the Functional Human Genome Project, No. HGM0200934the International Collaboration Program of Science and Technology, No. FGM0600914the Ministry of Education, Science and Technology, and the KRIBB Research Initiative Program Grant, No. KGM3320911, South Korea
文摘Long term hepatitis B virus (HBV) infection is a major risk factor in pathogenesis of chronic liver diseases,including hepatocellular carcinoma (HCC). The HBV encod-ed proteins,hepatitis B virus X protein and preS,appear to contribute importantly to the pathogenesis of HCC. Both are associated with oxidative stress,which can damage cellular molecules like lipids,proteins,and DNA during chronic infection. Chronic alcohol use is another important factor that contributes to oxidative stress in the liver. Previous studies reported that treatment with antioxidants,such as curcumin,silymarin,green tea,and vitamins C and E,can protect DNA from damage and regulate liver pathogenesis-related cascades by reducing reactive oxygen species. This review summarizes some of the relationships between oxidative stress and liver pathogenesis,focusing upon HBV and alcohol,and suggests antioxidant therapeutic approaches.
基金Supported by The 21st century Frontier Program in the Functional Human Genome Project,No.HGM0200934the International Collaboration Program of Science and Technology,No. FGM0600914+1 种基金the Research Program for New Drug Target Discovery Grant from the Ministry of Education,Science & Technology,No.NBM3300711the KRIBB Research Initiative Program Grant,No.KGM3320911
文摘AIM:To investigate the role of hepatitis B virus X-protein(HBx)-induced reactive oxygen species(ROS)on liver carcinogenesis in HBx transgenic mice and HepG2-HBx cells.METHODS:Cell growth rate was analyzed,and through western blotting,mitogenic signaling was observed.Endogenous ROS from wild and HBx transgenic mice and HepG2-Mock and HBx cells were assayed by FACS-calibur.Identification of oxidized and reduced phosphatase and tensin homolog(PTEN)was analyzed through N-ethylmaleimide alkylation,nonreducing electrophoresis.RESULTS:We observed that the cell-proliferation-related phosphoinositide 3-kinase/Akt pathway is activated by HBx in vivo and in vitro.Increased ROS were detected by HBx.Tumor suppressor PTEN,via dephosphorylation of Akt,was oxidized and inactivated by increased ROS.Increased oxidized PTEN activated the mitogenic pathway through over-activated Akt.However,treatment with ROS scavenger N-acetyl cysteine can reverse PTEN to a reduced form.Endogenously produced ROS also stimulated HBx expression.CONCLUSION:HBx induced ROS promoted Akt pathways via oxidized inactive PTEN.HBx and ROS maintained a positive regulatory loop,which aggravated carcinogenesis.
基金Semnan University for the financial support of this research(grant number 845)。
文摘Mixing efficiency in two-phase gas–liquid agitated vessel is one of the important challenges in the industrial processes.Computational fluid dynamics technique(CFD)was used to investigate the effect of four different pitched blade impellers,including 15°,30°,45°and 60°,on the mixing quality of gas–liquid agitated vessel.The multiphase flow behavior was modeled by Eulerian–Eulerian multiphase approach,and RNG k-εwas used to model the turbulence.The CFD results showed that a strong global vortex plays the main role on the mixing quality of the gas phase in the vessel.Based on the standard deviation criterion,it was observed that the axial distribution of the gas phase in the 30°impeller is about 55%better than the others.In addition,the results showed that the 30°impeller has a uniform radial distribution over the other impellers and the maximum gas phase holdup in the vessel.Investigation of the power consumption of the impellers showed that the 30°impeller has the highest power consumption among the other pitched blade impellers.Also,examine the effect of same power condition for pitched blade impellers showed that the 30°impeller has the best mixing quality in this condition.
基金the US National Science Foundation(CMMI-1562244 and CMMI-1612843)。
文摘Burgeoning growth of tall buildings in urban areas around the world is placing new demands on their performance under winds.This involves selection of the building form that minimizes wind loads and structural topologies that efficiently transfer loads.Current practice is to search for optimal shapes,but this limits buildings with static or fixed form.Aerodynamic shape tailoring that consists of modifying the external form of the building has shown great promise in reducing wind loads and associated structural motions as reflected in the design of Taipei 101 and Burj Khalifa.In these buildings,corner modifications of the cross-section and tapering along the height are introduced.An appealing alternative is to design a building that can adapt its form to the changing complex wind environment in urban areas with clusters of tall buildings,i.e.,by implementing a dynamic facade.To leap beyond the static shape optimization,autonomous dynamic morphing of the building shape is advanced in this study,which is implemented through a cyber–physical system that fuses together sensing,computing,actuating,and engineering informatics.This approach will permit a building to intelligently morph its profile to minimize the source of dynamic wind load excitation,and holds the promise of revolutionizing tall buildings from conventional static to dynamic facades by taking advantage of the burgeoning advances in computational design.
基金supported by the National Natural Science Foundation of China (40730633 and 40571030)
文摘Accurate inversion of land surface evapotranspiration (ET) in arid areas is of great significance for understanding global eco-hydrological process and exploring the spatio-temporal variation and ecological response of water resources. It is also important in the functional evaluation of regional water cycle and water balance, as well as the rational allocation and management of water resources. This study, based on model validation analysis at varied scales in fiwe Central Asian countries and China's Xinjiang, developed an appropriate approach for ET inversion in arid lands. The actual ET during growing seasons of the study area was defined, and the changes in water participating in evaporation in regional water cycle were then educed. The results show the simulation error of SEBS (Surface Energy Balance System) model under cloud amount consideration was 1.34% at 30-m spatial scale, 2.75% at 1-km spatial scale and 6,37% at 4-kin spatial scale. ET inversion for 1980-2007 applying SEBS model in the study area indicates: (1) the evaporation depth (May-September) by land types descends in the order of waters (660.24 ram) 〉 cultivated land (464.66 mm) 〉 woodland (388.44 mm) 〉 urbanized land (168.16 mm) 〉 grassland (160.48 mm) 〉 unused land (83.08 mm); and (2) ET during the 2005 growing season in Xinjiang and Central Asia was 2,168.68x108 m3 (with an evaporation/precipitation ratio of 1.05) and 9,741.03x108 m3 (with an evaporation/precipitation ratio of 1.4), respectively. The results unveiled the spatio-temporal variation rules of ET process in arid areas, providing a reference for further research on the water cycle and water balance in similar arid regions.
基金supported by the U.S.National Science Foundation’s Biocomplexity Program (DEB-0421530)LTER Program (DEB0620482)
文摘In response to limited availability of soil resources in basal root zone, plant extends its roots into nearby resource-rich zones to fulfill essential resource demands for survival and reproduction. This root proliferation into that enriched zones occupied by other plants constitutes interplant overlapping rooting zones and thereby the overlapping depletion zones, causing reduction in resource uptake by neighboring plants. By incorporating this mechanism into the classic resource competition model, we study interplant direct competition through their rooting system in an overlapping depletion zone. The model results indicate an extension of Tilman’s R* rule that has already been proved true when plants compete indirectly through their effect on shared resources. The results reveal that plant’s direct competitive ability (i.e., the ability to occupy an overlapping depletion zone by excluding others) can be characterized by its R*-value, where a best competitor having lowest R*-value excludes others from an overlapping zone and occupies the zone by depleting the resource level to the lowest as in its non-overlapping depletion zone. By analyzing the model, we find a suite of traits that confers R* variation among directly competing plants. This suite of traits would be a useful proxy measure for R* that do not necessarily require to establish equilibrium field monoculture—a requirement for R* measurement in the field.
基金supported by the National Natural Science Foundation of China (Grant No.31500443)Fujian Province Department of Education Foundation (Grant No.JA15178)
文摘Seasonal shifts play an important role in soil microbial community composition. This study examined the hypothesis that soil microbial community structure would vary with seasonal shifts in the Wuyi Mountains in Southeast China, and that two representative tree species (Castanopisi carlesii and Cunninghamia lanceolata) may have different soil microbial community composition. Phospholipids fatty acid analysis (PLFA) of seasonal shifts and was used to assess the effect vegetation types on soil microbial community structure. A total of 22 different PLFAs were identified from all the soil samples. The bacterial PLFAs accounted for 62.37% of the total PLFAs, followed by fungi (28.94%), and the minimum was actinomycetes (6.41%). Overall, the level of PLFAs in C. carlesii soil was greater than those in C. lanceolata soil, and significant differences were observed in some seasons. The amounts of total, bacteria, actinomycic and fungal PLFAs significantly changed with the seasons and followed a sequence order (summer 〉 autumn 〉 spring 〉 winter). The bacteria/fungi PLFAs and G (+)/G (-) PLFAs of two vegetation types also changed with the seasons and the ratios in summer and autumn were higher than those in spring and winter. The correlation analysis of microbial PLFAs and soil physicochemical properties showed that the total, bacteria, fungal, actinomycic, G (+) and G (-) PLFAs were significantly positive correlation with TOC, TN, TP, TK and moisture content. We concluded that the seasonal shifts and vegetation types affect soil microbial community composition by changing the soil physicochemical properties.
基金supported by the U.S. National Science Foundation's Biocomplexity Program (DEB-0421530)Long-Term Ecological Research Program (Sevilleta LTER,DEB-0620482)
文摘Ecosystem stays far from thermodynamic equilibrium. Through the interactions among biotic and abiotic components, and encompassing physical environments, ecosystem forms a dissipative struc- ture that allows it to dissipate energy continuously and thereby remains functional over time. Biotic regulation of energy and material fluxes in and out of the ecosystem allows it to maintain a homeostatic state which corresponds to a self-organized state emerged in a non-equilibrium thermodynamic system. While the associated self-organizational processes approach to homeostatic state, entropy (a measure of irre- versibility) degrades and dissipation of energy increases. We propose here that at a homeostatic state of ecosystem, biodiversity which includes both phenotypic and functional diversity, attains optimal values. As long as biodiversity remains within its optimal range, the corresponding homeostatic state is maintained. However, while embedded environmental conditions fluctuate along the gradient of accelerating changes, phenotypic diversity and functional diversity contribute inversely to the associated self-organizing proc- esses. Furthermore, an increase or decrease in biodiversity outside of its optimal range makes the eco- system vulnerable to transition into a different state.
基金supported by the U.S. National Science Foundation’s Biocom-plexity Program (DEB-0421530)Long-Term Ecological Research Program (Sevilleta LTER, DEB-0217774 and 0620482)University of California Agricultural Experiment Station
文摘Spatial organization of multiple plant species that appears as a non-random distribution of vegetative patches is one of the mostly observed spatial patterns in arid ecosystems. Yet understanding of ecological processes allowing this spatial pattern to emerge through interspecific interactions is still lacking. With a proposed conceptual model involving interspecific trade-offs between species competitive ability and colonization ability, we have argued that within patch abundance dynamics regulated by the mechanisms of competition are strongly influenced by the between patches colonization dynamics that are maintained via this trade-offs and it holds a positive, intraspecific occupancy-abundance relationship, in which increased patch occupancy increases species density within inhabiting patches. In a constant environment, while local abundance dynamics approach toward a stable equilibrium point, a fixed spatial arrangement of species can be retained through this coupled dynamics. However, in fluctuating environments where existence of such stable equilibriums is highly uncertain, it may involve continuous transitions from one community state to another as species re-organized themselves over space through the rapid changes in local species abundances. While some of the inhabiting patches are destroyed exogenously or endogenously, or species responses to increasing environmental fluctuations vary increasingly with time, discontinuous transitions into an abrupt, irreversible state of the community dynamics may occur, as with this effect the inherent positive relationship between occupancy and abundance of species is no longer maintained.
基金This research was funded by the Key Research and Development Program of Shandong Province(No.2019GH Z023)the National Natural Science Foundation of China(Nos.41906155,42030406)+1 种基金the Fundamental Research Funds for the Central Universities(No.201762005)the National Key Scientific Instrument and Equipment Development Projects of National Natural Science Foundation of China(No.41527901).
文摘The sea surface height data volume of the future wide-swath two-dimensional(2D)altimetric satellite is thousands of times greater than that of nadir altimetric satellites.The time complexity of the 2D altimetry mapping reaches O(n^(3)).It is challenging to map the global grid products of future 2D altimetric satellites.In this study,to improve the efficiency of global data mapping,a new algorithm called parallel-dynamic interpolation(PA-DI)was designed.Through the use of 2D data segmentation and fine-grained data mosaic methods,the parallel along-track DI processes were accelerated,and a fast and efficient spatial-temporal high-resolution and low-error enhanced mapping method was obtained.As determined from a comparison of the single-threaded DI with the PA-DI,the new algorithm optimized the time complexity from O(n^(3))to O(n^(3)/KL),which improved the mapping efficiency and achieved the expected results.According to the test results of the observing system simulation experiments,the PA-DI algorithm may provide an efficient and reliable method for future wide-swath 2D altimetric satellite mapping.
文摘Chemical bonding as well as structural,electronic and optical properties of CsPbF3 are calculated using the highly accurate full potential linearized augmented plane-wave method within the framework of density functional theory(DFT).The calculated lattice constant is found to be in good agreement with the experimental results.The electron density plots reveal strong ionic bonding in Cs-F and strong covalent bonding in Pb-F.The calculations show that the material is a direct and wide bandgap semiconductor with a fundamental gap at the R-symmetry point.Optical properties such as the real and imaginary parts of the dielectric function,refractive index,extinction coefficient,reflectivity,optical conductivity and absorption coefficient are also calculated.Based on the calculated wide and direct bandgap,as well as other optical properties of the compound,it is predicted that CsPbF_(3) is suitable for optoelectronic devices and anti-reflecting coatings.
基金the International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP# 00
文摘In the present work,we investigate the structural,optoelectronic and thermoelectric properties of the YLi3X2(X = Sb,Bi) compounds using the full potential augmented plane wave plus local orbital(FP-APW+lo) method.The exchangecorrelation potential is treated with the generalized gradient approximation/local density approximation(GGA/LDA) and with the modified Becke-Johnson potential(TB-mBJ) in order to improve the electronic band structure calculations.In addition,the estimated ground state properties such as the lattice constants,external parameters,and bulk moduli agree well with the available experimental data.Our band structure calculations with GGA and LDA predict that both compounds have semimetallic behaviors.However,the band structure calculations with the GGA/TB-mBJ approximation indicate that the ground state of the YLi3Sb2compound is semiconducting and has an estimated indirect band gap(Γ-L) of about 0.036 eV while the ground state of YLi3Bi2compound is semimetallic.Conversely the LDA/TB-mBJ calculations indicate that both compounds exhibit semiconducting characters and have an indirect band gap(Γ-L) of about 0.15 eV and 0.081 eV for YLi3Sb and YLi3Bi2respectively.Additionally,the optical properties reveal strong responses of the herein materials in the energy range between the IR and extreme UV regions.Thermoelectric properties such as thermal conductivity,electrical conductivity,Seebeck coefficient,and thermo power factors are also calculated.
基金DST-SERB (SB/YS/LS-109/2014) for providing financial assistance for this project
文摘Acetylcholinesterase(AChE) plays an important role in Alzheimer's disease(AD). The excessive activity of AChE causes various neuronal problems, particularly dementia and neuronal cell deaths. Generally, antiAChE drugs induce some serious neuronal side effects in humans. Therefore, this study sought to identify alternative drug molecules from natural products with fewer side effects than those of conventional drugs for treating AD. To achieve this, we developed computational methods for predicting drug and target binding affinities using the Schrodinger suite. The target and ligand molecules were retrieved from established databases. The target enzyme has 539 amino acid residues in its sequence alignment. Ligand molecules of 20 bioactive molecules were obtained from different kinds of plants, after which we performed critical analyses such as molecular docking; molecular dynamic(MD) simulations; and absorption, distribution, metabolism, and excretion(ADME) analysis. In the docking studies, the natural compound rutin showed a superior docking score of à 12.335 with a good binding energy value ofà73.313 kcal/mol. Based on these findings, rutin and the target complex was used to perform MD simulations to analyze rutin stability at 30 ns. In conclusion, our study demonstrates that rutin is a superior drug candidate for AD. Therefore, we propose that this molecule is worth further investigation using in vitro studies.
基金supported by the National Natural Science Foundation of China (Grant No 60771026)the Program for New Century Excellent Talents in University (Grant No NCET050271)+2 种基金the Natural Science Foundation of Shan’xi Province, China(Grant No 2006011009)US National Science Foundation Biocomplexity Program (DEB0421530)LTER Program (Grant NoDEB0620482)
文摘It has been reported that the minimal spatially extended phytoplankton-zooplankton system exhibits both temporal regular/chaotic behaviour, and spatiotemporal chaos in a patchy environment. As a further investigation by means of computer simulations and theoretical analysis, in this paper we observe that the spiral waves may exist and the spatiotemporal chaos emerge when the parameters are within the mixed Turing-Hopf bifurcation region, which arises from the far-field breakup of the spiral waves over a large range of diffusion coefficients of phytoplankton and zooplankton. Moreover, the spatiotemporal chaos arising from the far-field breakup of spiral waves does not gradually invade the whole space of that region. Our results are confirmed by nonlinear bifurcation of wave trains, We also discuss ecological implications of these spatially structured patterns.
基金part of the Department of Space/Department of Biotechnology sponsored project entitled "Biodiversity Characterization at Landscape level using Remote Sensing and GIS for Uttar Pradesh state except Vindhyan Hills"
文摘Shorea robusta Gaertn. f.(Sal)is one of the important tim-ber-yielding plants in India, which dominates the vegetation of Terai landscape of Uttar Pradesh state in India forming various communities based on its associations. The present study deals with delineation, map-ping and characterization of various communities of Sal (Shorea robusta) forests in Terai landscape of Uttar Pradesh, India ranging across over 16 districts. Field survey and visual interpretation based forest vegetation type classification and mapping was carried out as part of the project entitled ‘Biodiversity characterization at landscape level using remote sensing and GIS’. Indian Remote Sensing-P6 (Resourcesat-1) Linear Imaging Self Scanner-III satellite data was used during the study. The total area covered by different Sal forests was found to be approximately 2256.77 km2. Sal communities were identified and characterized based on their spectral properties, physiognomy and phytosociological charac-teristics. Following nine Sal communities were identified, delineated and mapped with reasonable accuracyviz.,Chandar,Damar, dry plains, moist plains, western alluvium, western alluvium plains, mixed moist deciduous, mixed dry deciduous andSiwalik. It is evident from the area estimates that mixed moist deciduous Sal is the most dominant commu-nity in the region covering around (1613.90 km2), other major communi-ties were found as western alluvium plains Sal (362.44 km2), mixed dry deciduous Sal (362.44 km2) and dry plains Sal (107.71 km2). The Terai landscape of Uttar Pradesh faces tremendous anthropogenic pressure leading to deterioration of the forests. Community level information could be used monitoring the status as well as for micro level conserva-tion and planning of the Sal forests in Terai Landscape of Uttar Pradesh.