How tumor-associated macrophages transit from a predominant antitumor M1-like phenotype to a protumoral M2-like phenotype during the development of pancreatic ductal adenocarcinoma (PDA) remains to be elucidated. We t...How tumor-associated macrophages transit from a predominant antitumor M1-like phenotype to a protumoral M2-like phenotype during the development of pancreatic ductal adenocarcinoma (PDA) remains to be elucidated. We thus conducted a study by employing a PDA-macrophage co-culture system, an “orthotopic” PDA syngeneic mouse model, and human PDA specimens, together with macrophages derived from GARP knockout mice and multiple analytic tools including whole-genome RNA sequencing, DNA methylation arrays, multiplex immunohistochemistry, metabolism measurement, and invasion/metastasis assessment. Our study showed that PDA tumor cells, through direct cell–cell contact, induce DNA methylation and downregulation of a panel of glucose metabolism and OXPHOS genes selectively in M1-like macrophages, leading to a suppressed glucose metabolic status in M1-like but not in M2-like macrophages. Following the interaction with PDA tumor cells, M1-like macrophages are reprogrammed phenotypically to M2-like macrophages. The interaction between M1-like macrophages and PDA cells is mediated by GARP and integrin αV/β8, respectively. Blocking either GARP or integrin would suppress tumor-induced DNA methylation in Nqo-1 gene and the reprogramming of M1-like macrophages. Glucose-response genes such as Il-10 are subsequently activated in tumor-educated M1-like macrophages. Partly through Il-10 and its receptor Il-10R on tumor cells, M1-like macrophages functionally acquire a pro-cancerous capability. Both exogenous M1-like and M2-like macrophages promote metastasis in a mouse model of PDA while such a role of M1-like macrophages is dependent on DNA methylation. Our results suggest that PDA cells are able to reprogram M1-like macrophages metabolically and functionally through a GARP-dependent and DNA methylation-mediated mechanism to adopt a pro-cancerous fate.展开更多
The classical functions of bile acids include acting as detergents to facilitate the digestion and absorption of nutrients in the gut. In addition, bile acids also act as signaling molecules to regulate glucose homeos...The classical functions of bile acids include acting as detergents to facilitate the digestion and absorption of nutrients in the gut. In addition, bile acids also act as signaling molecules to regulate glucose homeostasis, lipid metabolism and energy expenditure. The signaling potential of bile acids in compartments such as the systemic circulation is regulated in part by an efficient enterohepatic circulation that functions to conserve and channel the pool of bile acids within the intestinal and hepatobiliary compartments. Changes in hepatobiliary and intestinal bile acid transport can alter the composition, size,and distribution of the bile acid pool. These alterations in turn can have significant effects on bile acid signaling and their downstream metabolic targets. This review discusses recent advances in our understanding of the inter-relationship between the enterohepatic cycling of bile acids and the metabolic consequences of signaling via bile acid-activated receptors, such as farnesoid X nuclear receptor(FXR)and the G-protein-coupled bile acid receptor(TGR5).展开更多
基金L.Z.was supported by NIH grant R01 CA169702NIH grant R01 CA197296+1 种基金the Viragh Foundation and the Skip Viragh Pancreatic Cancer Center at Johns Hopkins,Sidney Kimmel Comprehensive Cancer Center Grant P30 CA006973K.F.was supported by a JSPS Overseas Research Fellowship from the Japan Society for the Promotion of Science.Z.L.is supported by multiple NIH grants(R01 AI077283,P01 CA186866,R01 CA199419,and R01 CA213290).
文摘How tumor-associated macrophages transit from a predominant antitumor M1-like phenotype to a protumoral M2-like phenotype during the development of pancreatic ductal adenocarcinoma (PDA) remains to be elucidated. We thus conducted a study by employing a PDA-macrophage co-culture system, an “orthotopic” PDA syngeneic mouse model, and human PDA specimens, together with macrophages derived from GARP knockout mice and multiple analytic tools including whole-genome RNA sequencing, DNA methylation arrays, multiplex immunohistochemistry, metabolism measurement, and invasion/metastasis assessment. Our study showed that PDA tumor cells, through direct cell–cell contact, induce DNA methylation and downregulation of a panel of glucose metabolism and OXPHOS genes selectively in M1-like macrophages, leading to a suppressed glucose metabolic status in M1-like but not in M2-like macrophages. Following the interaction with PDA tumor cells, M1-like macrophages are reprogrammed phenotypically to M2-like macrophages. The interaction between M1-like macrophages and PDA cells is mediated by GARP and integrin αV/β8, respectively. Blocking either GARP or integrin would suppress tumor-induced DNA methylation in Nqo-1 gene and the reprogramming of M1-like macrophages. Glucose-response genes such as Il-10 are subsequently activated in tumor-educated M1-like macrophages. Partly through Il-10 and its receptor Il-10R on tumor cells, M1-like macrophages functionally acquire a pro-cancerous capability. Both exogenous M1-like and M2-like macrophages promote metastasis in a mouse model of PDA while such a role of M1-like macrophages is dependent on DNA methylation. Our results suggest that PDA cells are able to reprogram M1-like macrophages metabolically and functionally through a GARP-dependent and DNA methylation-mediated mechanism to adopt a pro-cancerous fate.
基金supported by the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health (NIH,No.R01DK047987)supported by a Research Supplement to Promote Diversity in Health Related Research from the NIH
文摘The classical functions of bile acids include acting as detergents to facilitate the digestion and absorption of nutrients in the gut. In addition, bile acids also act as signaling molecules to regulate glucose homeostasis, lipid metabolism and energy expenditure. The signaling potential of bile acids in compartments such as the systemic circulation is regulated in part by an efficient enterohepatic circulation that functions to conserve and channel the pool of bile acids within the intestinal and hepatobiliary compartments. Changes in hepatobiliary and intestinal bile acid transport can alter the composition, size,and distribution of the bile acid pool. These alterations in turn can have significant effects on bile acid signaling and their downstream metabolic targets. This review discusses recent advances in our understanding of the inter-relationship between the enterohepatic cycling of bile acids and the metabolic consequences of signaling via bile acid-activated receptors, such as farnesoid X nuclear receptor(FXR)and the G-protein-coupled bile acid receptor(TGR5).