We utilized a unique culture system to analyze the expression patterns of gene, protein, and cell surface antigen, and the biological process of the related genes in erythroid and myeloid differentiation and switching...We utilized a unique culture system to analyze the expression patterns of gene, protein, and cell surface antigen, and the biological process of the related genes in erythroid and myeloid differentiation and switching of hematopoietic stem cells (HSCs) in response to cytokine alterations. Gene-specific fragments (266) identified from five populations of cytokine-stimulated HSCs were categorized into three groups: (1) expressed specifically in a single cell population; (2) expressed in two cell populations, and (3) expressed in three or more populations. Of 145 defined cDNAs, three (2%) were novel genes. Protein two-dimensional gel electrophoresis and flow cytometry analyses showed overlapped and distinguished protein expression profiles in the cell populations studied. Biological process mapping of mRNAs expressed in erythroid and myeloid lineages indicated that mRNAs shared by both lineages attended 'core processes,' whereas genes specifically expressed in either lineage alone were related to specific processes or cellular maturation. Data from this study support the hypothesis that committed HSCs (El4 or G14) cells can still be redirected to develop into myeloid or erythroid cells when erythropoietin (EPO) is replaced with granulocyte-colony stimulating factor (G-CSF) under erythroid-cultured condition or G-CSF with EPO in myeloid-cultured environment, respectively. Our results suggest that genes or proteins co-expressed in erythroid and myeloid lineages may be essential for the lineage maintenance and switching in hematopoiesis.展开更多
Human hematopoiesis was evaluated using the techniques of controlled stem cell differentiation, two-dimensional gel electrophoresis-based proteomics, and functional genomics. We provide the first report that glia matu...Human hematopoiesis was evaluated using the techniques of controlled stem cell differentiation, two-dimensional gel electrophoresis-based proteomics, and functional genomics. We provide the first report that glia maturation factor gamma (GMFG) is a cytokine-responsive protein in erythropoietin-induced and granulocyte-colony stimulating factor-induced hematopoietic lineage development. Results from global functional genomics analysis indicate that GMFG possesses several other features: hematopoietic tissue-specific gene expression, a promoter concentrated with high-score hematopoiesis-specific transcription factors, and possible molecular coevolution with a rudimentary blood/immune system. On the basis of our findings, we hypothesize that GMFG is a hematopoietic-specific protein that may mediate the pluripotentiality and lineage commitment of human hematopoietic stem cells.展开更多
文摘We utilized a unique culture system to analyze the expression patterns of gene, protein, and cell surface antigen, and the biological process of the related genes in erythroid and myeloid differentiation and switching of hematopoietic stem cells (HSCs) in response to cytokine alterations. Gene-specific fragments (266) identified from five populations of cytokine-stimulated HSCs were categorized into three groups: (1) expressed specifically in a single cell population; (2) expressed in two cell populations, and (3) expressed in three or more populations. Of 145 defined cDNAs, three (2%) were novel genes. Protein two-dimensional gel electrophoresis and flow cytometry analyses showed overlapped and distinguished protein expression profiles in the cell populations studied. Biological process mapping of mRNAs expressed in erythroid and myeloid lineages indicated that mRNAs shared by both lineages attended 'core processes,' whereas genes specifically expressed in either lineage alone were related to specific processes or cellular maturation. Data from this study support the hypothesis that committed HSCs (El4 or G14) cells can still be redirected to develop into myeloid or erythroid cells when erythropoietin (EPO) is replaced with granulocyte-colony stimulating factor (G-CSF) under erythroid-cultured condition or G-CSF with EPO in myeloid-cultured environment, respectively. Our results suggest that genes or proteins co-expressed in erythroid and myeloid lineages may be essential for the lineage maintenance and switching in hematopoiesis.
文摘Human hematopoiesis was evaluated using the techniques of controlled stem cell differentiation, two-dimensional gel electrophoresis-based proteomics, and functional genomics. We provide the first report that glia maturation factor gamma (GMFG) is a cytokine-responsive protein in erythropoietin-induced and granulocyte-colony stimulating factor-induced hematopoietic lineage development. Results from global functional genomics analysis indicate that GMFG possesses several other features: hematopoietic tissue-specific gene expression, a promoter concentrated with high-score hematopoiesis-specific transcription factors, and possible molecular coevolution with a rudimentary blood/immune system. On the basis of our findings, we hypothesize that GMFG is a hematopoietic-specific protein that may mediate the pluripotentiality and lineage commitment of human hematopoietic stem cells.