The tensile response, the low cycle fatigue (LCF) resistance, and the creep behavior of an aluminum (A1) cast alloy are studied at ambient and elevated temperatures. A non-contact real-time optical extensometer ba...The tensile response, the low cycle fatigue (LCF) resistance, and the creep behavior of an aluminum (A1) cast alloy are studied at ambient and elevated temperatures. A non-contact real-time optical extensometer based on the digital image correlation (DIC) is developed to achieve strain measurements without damage to the specimen. The optical extensometer is validated and used to monitor dynamic strains during the mechanical experiments. Results show that Young's modulus of the cast alloy decreases with the increasing temperature, and the percentage elongation to fracture at 100 ℃ is the lowest over the temperature range evaluated from 25 ℃ to 300 ℃. In the LCF test, the fatigue strength coefficient decreases, whereas the fatigue strength exponent increases with the rising temperature. The fatigue ductility at 100 ℃. As expected, the resistance to and changes from 200 ℃ to 300 ℃. coefficient and exponent reach maximum values creep decreases with the increasing temperature展开更多
The high-strength low-alloy( HSLA ) steel heat-affected zone (HAZ)softening was predicted using a grey model. HSLA steel DILLIMAX690E, NK-HITEN61OU2 and BHW35 were taken as examples in the research on ultra-narrow...The high-strength low-alloy( HSLA ) steel heat-affected zone (HAZ)softening was predicted using a grey model. HSLA steel DILLIMAX690E, NK-HITEN61OU2 and BHW35 were taken as examples in the research on ultra-narrow gap automatic welding technology. Test results turned out to be that the errors between the values calculated by the Grey Model (GM) ( 1,1 ) model and their actual value were less than 2%, indicating that the grey prediction method could accurately reflect the actual situation of the high-strength low-alloy steel heat-affected zone softening. This method will play a crucial role in guiding the applications of HSLA steel welded structures in the future.展开更多
A slip-draft embedded control system was designed and developed for an independent developed 2WD(two-wheel drive)electric tractor,to improve the traction efficiency,operation performance and ploughing depth stability ...A slip-draft embedded control system was designed and developed for an independent developed 2WD(two-wheel drive)electric tractor,to improve the traction efficiency,operation performance and ploughing depth stability of the electric tractor.In this system,the battery of electric tractor was innovatively equivalent to the original counterweight of the fuel tractor.And through dynamic analysis of electric tractor during ploughing,the mathematical model of adjusting the center of gravity about draft force and slip rate was established.Then the automatic adjustment of the center of gravity for electric tractor was realized through the adaptive adjustment of battery position.Finally,the system was carried on electric tractor for performance evaluation under different ploughing conditions,the traction efficiency,slip rate and front wheel load of electric tractor were measured and controlled synchronously to make it close to the set range.And the comparative experiments of ploughing operation were carried out under the two modes of adaptive adjustment of center of gravity and fixed center of gravity.The test results showed that,based on the developed control system,the center of gravity of electric tractor can be adjusted in real time according to the complex changes of working conditions.During ploughing operation with adjusting adaptively battery position,the average values of traction efficiency,slip rate,front wheel load and relative error of tillage depth of electric tractor were 64.5%,22.2%,2045.0 N and 2.0%respectively.Which were optimized by 15.0%,29.5%,19.6%and 80.0%respectively,compared with electric tractor with fixed battery position.The slip-draft embedded control system can not only realize the adaptive adjustment of the center of gravity position in the ploughing process of electric tractor,but also improve the traction efficiency and the stability of ploughing depth,which can provide reference for the actual production operation of electric tractor.展开更多
Hot stamping(press hardening) is widely used to fabricate safety components such as door beams and B pillars with increased strength via quenching. However, parts that are hot-stamped from ultra-high-strength steel(UH...Hot stamping(press hardening) is widely used to fabricate safety components such as door beams and B pillars with increased strength via quenching. However, parts that are hot-stamped from ultra-high-strength steel(UHSS) have very limited elongation,i.e., low ductility. In the present study, a novel variant of hot stamping technology called quenching-and-partitioning(Q&P) hot stamping was developed. This approach was tested on several UHSS sheet metals, and it was confirmed that this method can be used to overcome the drawbacks associated with conventional hot stamping. The applicability of Q&P hot stamping to each of these steels was also assessed. The part properties and performances of three widely used ultra-high-strength sheet metals, B1500 HS,27 SiMn, and TRIP780, were evaluated through tensile testing and microstructural observations. The results demonstrated that the ductility of Q&P hot-stamped sheet metals was notably higher than that of the conventionally hot-stamped parts because Q&P hot stamping gives rise to a dual-phase structure of both martensite and austenite. Further, material tests demonstrated that the Q&P treatment had positive effects on all three selected materials, of which TRIP780 had the best ductility and the highest value of the product of strength and plasticity. Scanning electron microscopy images indicated that the silicon in the steels could limit the formation of cementite and would, therefore, improve the mechanical properties of Q&P hot-stamped products.展开更多
Transmission error(TE)in geared rotors is a predominant source of inherent excitation at the pitch point of the gear meshing.In this paper,a transverse vibration analysis is presented to study the effect of TE on gear...Transmission error(TE)in geared rotors is a predominant source of inherent excitation at the pitch point of the gear meshing.In this paper,a transverse vibration analysis is presented to study the effect of TE on geared rotors.Due to asymmetry in the TE,it is expected to have both forward and backward whirls excited during rotor whirling,which could be used for its detection.This aspect has been envisioned first time in the present work.To capture this,an approach of orienting the line of action of a gear-pair along oblique plane is considered and the mathematical modeling has been performed of a simple spur gear-pair connecting two parallel shafts at its mid-span with an asymmetric TE.To capture the forward and backward whirls,equations of motion are converted into a complex form that facilitates obtaining response in full spectrum.The response of system model with assumed transmission error and gear-pair parameters has been obtained through a numerical simulation,which shows distinctly the forward and backward whirls due to the TE.Through a simple test rig experimentation,a similar behaviour was observed in transverse vibrations of geared rotors in the full spectrum,which validate the proposed model.展开更多
Journal misalignment is common in journal bearings. When severe journal misalignment takes place, it affects nearly all aspects of bearing performance. This paper provided a comprehensive analysis of misaligned journa...Journal misalignment is common in journal bearings. When severe journal misalignment takes place, it affects nearly all aspects of bearing performance. This paper provided a comprehensive analysis of misaligned journal bearings based on two different mass-conservative models which appropriately took into account film rupture and reformation. The lubrication characteristics and performance parameters including the cavitation zones, pressure distribution, density distribution, oil leakage, load capacity, moment, and attitude angle were compared with the traditional lubrication model. The results showed that cavitation has great effect on bearing performances, especially when the surface roughness is large. Therefore, it is necessary to consider the effects of journal misalignment alongside inter-asperity cavitation theory in the design and analyses of journal bearings.展开更多
An appropriate spacing policy improves traffic flow and traffic efficiency while reducing commuting time and energy con-sumption.In this paper,the integrated spacing policy that combines the benefits of the constant t...An appropriate spacing policy improves traffic flow and traffic efficiency while reducing commuting time and energy con-sumption.In this paper,the integrated spacing policy that combines the benefits of the constant time headway(CTH)and safety distance(SD)spacing policies is proposed in an attempt to improve traffic flow and efficiency.Firstly,the performance of the CTH and SD spacing policies is analyzed from the perspective of the microscopic characteristics of human-vehicle and the macroscopic characteristics of traffic flow.The switching law between CTH and SD spacing policies and the integrated spacing policy are then proposed to increase traffic efficiency according to the traffic conditions,and the critical speed for the proposed integrated spacing policy is derived.Using the proposed switching law,the integrated spacing policy utilizes the safety redundancy difference between the CTH and SD spacing policies in a flexible manner.Simulation tests demon-strate that the proposed integrated spacing policy increases traffic flow and that the traffic flow maintains string stability in a wider range of traffic flow density.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11372173,11672347,and 11727804)the Science and Technology Development Foundation of Shanghai Automobile Industry(No.1514)
文摘The tensile response, the low cycle fatigue (LCF) resistance, and the creep behavior of an aluminum (A1) cast alloy are studied at ambient and elevated temperatures. A non-contact real-time optical extensometer based on the digital image correlation (DIC) is developed to achieve strain measurements without damage to the specimen. The optical extensometer is validated and used to monitor dynamic strains during the mechanical experiments. Results show that Young's modulus of the cast alloy decreases with the increasing temperature, and the percentage elongation to fracture at 100 ℃ is the lowest over the temperature range evaluated from 25 ℃ to 300 ℃. In the LCF test, the fatigue strength coefficient decreases, whereas the fatigue strength exponent increases with the rising temperature. The fatigue ductility at 100 ℃. As expected, the resistance to and changes from 200 ℃ to 300 ℃. coefficient and exponent reach maximum values creep decreases with the increasing temperature
文摘The high-strength low-alloy( HSLA ) steel heat-affected zone (HAZ)softening was predicted using a grey model. HSLA steel DILLIMAX690E, NK-HITEN61OU2 and BHW35 were taken as examples in the research on ultra-narrow gap automatic welding technology. Test results turned out to be that the errors between the values calculated by the Grey Model (GM) ( 1,1 ) model and their actual value were less than 2%, indicating that the grey prediction method could accurately reflect the actual situation of the high-strength low-alloy steel heat-affected zone softening. This method will play a crucial role in guiding the applications of HSLA steel welded structures in the future.
基金supported by the International cooperation project of Qilu University of Technology(Grant No.QLUTGJHZ2018022).
文摘A slip-draft embedded control system was designed and developed for an independent developed 2WD(two-wheel drive)electric tractor,to improve the traction efficiency,operation performance and ploughing depth stability of the electric tractor.In this system,the battery of electric tractor was innovatively equivalent to the original counterweight of the fuel tractor.And through dynamic analysis of electric tractor during ploughing,the mathematical model of adjusting the center of gravity about draft force and slip rate was established.Then the automatic adjustment of the center of gravity for electric tractor was realized through the adaptive adjustment of battery position.Finally,the system was carried on electric tractor for performance evaluation under different ploughing conditions,the traction efficiency,slip rate and front wheel load of electric tractor were measured and controlled synchronously to make it close to the set range.And the comparative experiments of ploughing operation were carried out under the two modes of adaptive adjustment of center of gravity and fixed center of gravity.The test results showed that,based on the developed control system,the center of gravity of electric tractor can be adjusted in real time according to the complex changes of working conditions.During ploughing operation with adjusting adaptively battery position,the average values of traction efficiency,slip rate,front wheel load and relative error of tillage depth of electric tractor were 64.5%,22.2%,2045.0 N and 2.0%respectively.Which were optimized by 15.0%,29.5%,19.6%and 80.0%respectively,compared with electric tractor with fixed battery position.The slip-draft embedded control system can not only realize the adaptive adjustment of the center of gravity position in the ploughing process of electric tractor,but also improve the traction efficiency and the stability of ploughing depth,which can provide reference for the actual production operation of electric tractor.
基金supported by the National Natural Science Foundation of China(Grant Nos.51105247&U1564203)
文摘Hot stamping(press hardening) is widely used to fabricate safety components such as door beams and B pillars with increased strength via quenching. However, parts that are hot-stamped from ultra-high-strength steel(UHSS) have very limited elongation,i.e., low ductility. In the present study, a novel variant of hot stamping technology called quenching-and-partitioning(Q&P) hot stamping was developed. This approach was tested on several UHSS sheet metals, and it was confirmed that this method can be used to overcome the drawbacks associated with conventional hot stamping. The applicability of Q&P hot stamping to each of these steels was also assessed. The part properties and performances of three widely used ultra-high-strength sheet metals, B1500 HS,27 SiMn, and TRIP780, were evaluated through tensile testing and microstructural observations. The results demonstrated that the ductility of Q&P hot-stamped sheet metals was notably higher than that of the conventionally hot-stamped parts because Q&P hot stamping gives rise to a dual-phase structure of both martensite and austenite. Further, material tests demonstrated that the Q&P treatment had positive effects on all three selected materials, of which TRIP780 had the best ductility and the highest value of the product of strength and plasticity. Scanning electron microscopy images indicated that the silicon in the steels could limit the formation of cementite and would, therefore, improve the mechanical properties of Q&P hot-stamped products.
文摘Transmission error(TE)in geared rotors is a predominant source of inherent excitation at the pitch point of the gear meshing.In this paper,a transverse vibration analysis is presented to study the effect of TE on geared rotors.Due to asymmetry in the TE,it is expected to have both forward and backward whirls excited during rotor whirling,which could be used for its detection.This aspect has been envisioned first time in the present work.To capture this,an approach of orienting the line of action of a gear-pair along oblique plane is considered and the mathematical modeling has been performed of a simple spur gear-pair connecting two parallel shafts at its mid-span with an asymmetric TE.To capture the forward and backward whirls,equations of motion are converted into a complex form that facilitates obtaining response in full spectrum.The response of system model with assumed transmission error and gear-pair parameters has been obtained through a numerical simulation,which shows distinctly the forward and backward whirls due to the TE.Through a simple test rig experimentation,a similar behaviour was observed in transverse vibrations of geared rotors in the full spectrum,which validate the proposed model.
基金Project (No. U1233201) supported by the Joint Funds of National Science Foundation of ChinaCivil Administration Foundation of China
文摘Journal misalignment is common in journal bearings. When severe journal misalignment takes place, it affects nearly all aspects of bearing performance. This paper provided a comprehensive analysis of misaligned journal bearings based on two different mass-conservative models which appropriately took into account film rupture and reformation. The lubrication characteristics and performance parameters including the cavitation zones, pressure distribution, density distribution, oil leakage, load capacity, moment, and attitude angle were compared with the traditional lubrication model. The results showed that cavitation has great effect on bearing performances, especially when the surface roughness is large. Therefore, it is necessary to consider the effects of journal misalignment alongside inter-asperity cavitation theory in the design and analyses of journal bearings.
基金Special thanks are due to the National Natural Science Foundation of China[51675217,61790564]the Young Elite Scientists Sponsorship Program by CAST[2016QNRC001]+1 种基金the China Automobile Industry Innovation and Development Joint Fund[U1564213]the Opening Founding of State Key Laboratory of Automotive Simulation and Control[20161114]for supporting authors’research.
文摘An appropriate spacing policy improves traffic flow and traffic efficiency while reducing commuting time and energy con-sumption.In this paper,the integrated spacing policy that combines the benefits of the constant time headway(CTH)and safety distance(SD)spacing policies is proposed in an attempt to improve traffic flow and efficiency.Firstly,the performance of the CTH and SD spacing policies is analyzed from the perspective of the microscopic characteristics of human-vehicle and the macroscopic characteristics of traffic flow.The switching law between CTH and SD spacing policies and the integrated spacing policy are then proposed to increase traffic efficiency according to the traffic conditions,and the critical speed for the proposed integrated spacing policy is derived.Using the proposed switching law,the integrated spacing policy utilizes the safety redundancy difference between the CTH and SD spacing policies in a flexible manner.Simulation tests demon-strate that the proposed integrated spacing policy increases traffic flow and that the traffic flow maintains string stability in a wider range of traffic flow density.